
IMSE
Ultra

www.abelko.se

Script Language
Reference manual

Manual version 1.15

Valid from release 1.87

1

All information in this manual is based on information available at the time of

printing. The manual is published to ease the use of an Ultra. Abelko Innovation
cannot guarantee that there are no mistakes or errors in this documentation

and cannot be held responsible for any consequences resulting from the use or
misuse based on this information.

All information in this document can be changed without notice. It is likely
that certain sections will be changed at the release of new product

versions. Be sure to have the latest version of this document and the
corresponding version of Ultra.

© Abelko Innovation. All Rights Reserved.

2

1 Introduction .. 5
1.1 Manual Version .. 5
1.2 Other Manuals ... 5

2 UltraScript ... 6
2.1 Language Basics ... 6
2.2 UltraScript vs WMPro Scripts .. 6

3 Application Scripts .. 8
3.1 Declaration .. 8

3.1.1 Example .. 9
3.1.2 Syntax Graph .. 10
3.1.3 Names .. 10
3.1.4 Inputs, Outputs and Channels - ChnDecl 10
3.1.5 Routine Declaration Part ... 11

4 Routines .. 12
4.1 Syntax Graph .. 12

5 Statements .. 13
5.1 Assignments .. 13

5.1.1 IF-statements .. 13
5.1.2 Variable Assignment ... 14
5.1.3 Channel Value Assignment ... 14

5.2 Call Statements ... 15
5.3 Print Statements .. 16
5.4 Logentry Statements ... 16

6 Expressions .. 18
6.1 Numbers .. 18
6.2 Resource Names ... 18
6.3 Operators .. 19

6.3.1 Unary Operators ... 19
6.3.2 Infix Operators .. 19
6.3.3 Parenthesis ... 20

6.4 Reserved Functions .. 21
6.5 Other Expressions ... 23

3

6.6 Examples and Error Handling.. 23
7 Channels ... 24

7.1 Manual Override .. 24
7.2 Count Total Active Manual Overrides .. 25

8 Alarms ... 26
8.1 Blocking Alarms ... 27

9 Curves ... 28
10 Subapplications ... 29
11 Buffers ... 30

11.1 Buffer Statements .. 30
11.2 Buffer Expressions .. 30

12 Communication monitoring (portal) ... 32
13 Groups ... 33

13.1 Group Syntax .. 33
13.1.1 Iterator .. 34

13.2 Group statements and expressions ... 35
13.3 Collection... 37
13.4 Example .. 37

14 Objects .. 41
15 GFBI ... 42

15.1 The Device Type Definition .. 42
15.1.1 Overview ... 42
15.1.2 WMPro / WMultra Compatibility and Differences 43
15.1.3 Syntax ... 44
15.1.4 Example .. 48

15.2 Semantics Explanation .. 51
15.2.1 First Row .. 51
15.2.2 PARAMETER, PUBLIC and PRIVATE .. 51
15.2.3 BAUDRATE to CHECKSUM ... 52

15.3 Semantics Explanation: Telegram Definitions .. 53
15.3.1 Question Compiler Definition .. 53
15.3.2 Answer Parser Definition .. 54

4

15.3.3 TIMEOUT ... 54
15.4 Semantics Explanation: SCHEDULER .. 54
15.5 Telegram datatype definitions .. 56
15.6 Telegram Expression Values Definition ... 57

16 AeACom .. 58
17 GUI Formatting Codes ... 59
18 Script Editor Features .. 60

18.1 Search and Replace .. 60
18.2 Autocomplete and Shorthands .. 60

5

1 Introduction
Welcome to IMSE Ultra. This series of products consists of control units IMSE
UltraBase20, IMSE UltraBase30, IMSE UltraBase40, display IMSE UltraTouch
and expansion modules that can be connected to expand the number of
inputs and outputs.

This manual aims to describe the script language. The first part describes
application scripts. These are scripts that form applications which can be
mixed with graphical programming. The second part describes
communication scripts. These are used to write type definitions for external
units.

The manual is a reference manual, and the reader should be familiar with the
general concepts of programming.

1.1 Manual Version
Document number 4688-025

Version 1.11, 2021-10-15. Valid for Release 1.65.

Version 1.12, 2022-01-10. Valid from Release 1.65.

Version 1.13, 2022-06-20. Valid from Release 1.65.

Version 1.14, 2022-09-15. Valid from Release 1.65.

Version 1.15, 2022-11-14. Valid from Release 1.87

1.2 Other Manuals
User manual: a guide for how to use the configured system.

Configuration manual: information on how to configure the system.

Quick start guide: information on how to quickly get the system up and
running.

All manuals are available for download at www.abelko.se.

6

2 UltraScript
UltraScript, or Ultra Platform Script (UPG), is the programming language
that is the base of the Ultra platform. Everything an Ultra does, above the
basic functionality of the resources like channels and alarms are dictated by a
script. All graphical programs are translated to scripts to be executed.

You can do a lot with the graphical programming tool, but there are a few
things that cannot be expressed with it. There may also be tasks that is
possible to do graphically but are more easily implemented in script. There is
also the matter of personal preferences. Some people are more comfortable
using written programming language, others prefer graphical programming.

2.1 Language Basics
The UltraScript language is a programming language specifically for the Ultra
platform. It has a syntax based on other languages like Pascal, Modula2 and
Structured text. It is an imperative language which means that it works in
the same basic way most languages do. An experienced programmer should
not find it difficult to begin programming UltraScript using examples.

Some common language constructs are not part of the UltraScript language.
It does not for example have for or while loops, or indexed arrays. The
reason for this is that these are “dangerous” language constructs. Loops may,
through programmer mistakes, end up being eternal and an array index may
be out of bonds. That would be really dangerous in a control loop causing the
system to lock up, or go into some advanced error handling. The UltraScript
language has eliminated the need for these constructs, and thus potential
errors. It is a little bit simpler than full programming languages, but still
powerful enough, safer and easy to learn.

The Ultra platform runs on a one second tick. All applications and routines
are run once every second, calculating new output values and internal states.
There is therefore no main loop in a script application or an end.

2.2 UltraScript vs WMPro Scripts
The Ultra platform is the successor of the IMSE WebMaster pro, and the script
language is based on the Goliath Platform Script (GPS) used in WMPro. The
basic syntax of a routine is still the same, but the new application concept of
the Ultra makes it impossible to maintain full backward compatibility. WMPro
scripts have to be transformed into application scripts. This involves changing
some declarations but not the algorithm part of the script. There are however
new powerful language constructs in UltraScript, so don’t stop reading now
even if you are an experienced WMPro programmer.

7

GFBI type definitions written for WMPro can be used without change in an
Ultra device. The Ultra does allow new more powerful and easily read syntax
to be used, so the opposite is not automatically true.

8

3 Application Scripts
An application in an Ultra controller consists of an application script and all its
associated resources, like channels, alarms, parameters, overviews etc. The
application resource is a container for all the parts of an application.

Applications can be hierarchically organized. A top level application can
contain sub applications, which also can in their turn contain sub applications.
Sub applications will always have a parent application which runs them.
Only top level applications can be started and stopped independently.

An application cannot run unless it has a syntactically correct application
script associated with it. The application script has the same syntax
regardless if it is a top level application or a sub application. It is the
configuration of the application resource that decides whether it is at top
level or not.

Applications do not communicate with physical IO directly. It defines a set of
input and output channels through which it communicates with other parts of
the system. At top level the graphical programming tool is used to connect
the application inputs and outputs to IO-units that in the end correspond to
physical IO. Application IO's can also be connected to other applications.

Groups and objects are other ways for an application to interact with the rest
of the world. This is described in a separate chapter. Groups and objects will
be implemented in later releases.

When running an application it will be executed once every second. The basic
sequence is: inputs are updated, alarms are updated, the application scripts
are executed and lastly outputs are updated.

3.1 Declaration
The application script consists of a resource declaration part (where the
resources it will access are declared), a sub application declaration part and a
routine declaration part.

9

3.1.1 Example
APPLICATION MyApplication
 INPUTS
 OutdoorTemp;
 SystemFwrdTemp ALARMS LowTemp, HighTemp;
 OUTPUTS
 Heater;
 PARAMETERS
 Boost;
 CURVES
 SetPointCurve;
 CALENDARS
 Summer;
 SUBAPPLICATIONS
 AnotherApp;

 ROUTINE HeatCtrl
 VAR
 SetPoint;
 BEGIN
 SetPoint := SetPointCurve(OutdoorTemp) + Boost;
 AnotherApp.SetPoint <- SetPoint;
 AnotherApp.CurrentVal <- SystemFwrdTemp;
 CALL(AnotherApp);
 Heater <- AnotherApp.Out;

 IF SystemFwrdTemp.LowTemp THEN
 Heater <- 100;
 ENDIF;

 IF SystemFwrdTemp.HighTemp THEN
 Heater <- 0;
 ENDIF;

 IF Summer THEN
 Heater <- 0;
 ENDIF;
 END;
END APPLICATION;

10

3.1.2 Syntax Graph

Syntaxgraph 1: application

3.1.3 Names
Applications and all other resources have a name. This is the identity of the
resource. It is stored as an identity string in the resource. The names must
be unique within the application, and the named resources must exist. There
is an option to automatically create missing resources when parsing a script.
This makes it easier to write scripts, but the programmer must remember to
configure the empty resources afterward. They are created only with the
identity string defined.

Sub applications cannot be auto created. They must be created manually in
advance, as a sub application to the application you are coding. Missing
resources generates syntax error.

3.1.4 Inputs, Outputs and Channels - ChnDecl
Inputs, outputs and channels are all channels. They are defined according to
the following syntax graph:

Syntaxgraph 2: chndecl

When defining a channel you also define its alarms by naming them. This is

11

required to access them from script.

Input channels are channels that can be assigned values from parent
applications. In the graphical programming they will appear as inputs on the
application block. You are not allowed to assign values to input channels in
the application script, they are read only.

Output channels are channels that can be read by parent applications and
appear as application outputs in graphical programming.

Channels declared with the CHANNEL keyword are internal to the application.

3.1.5 Routine Declaration Part
The final part of the application is the routine declaration part. This may
contain one or many routines. These define what the application actually
does.

All declared routines in an application will be executed in the declared order
when the application is executed. Routines can also be declared as
SUBROUTINES. These routines will not be automatically executed. They are
executed when explicitly called using a CALL statement.

12

4 Routines
Routines correspond to procedures or void functions in other programming
languages. They may define local variables and they define statements that
do things to the local variables or the resources declared in the application
declaration.

The example code in 3.1.1 contains a routine declaration.

A routine may also be declared as SUBROUTINE. All routines will be executed
when the application is executed, but a sub routine will only be executed
when explicitly called from another routine or a parent application.

Syntaxgraph 3: routine

4.1 Syntax Graph
Variables are declared simply by naming them. Buffers will be explained in a
separate chapter.

Between BEGIN and END you place the statements that make up the program.

13

5 Statements
Statements are program code that makes something happen or controls the
flow of a program. The most important are assignments, if statements
and calls. There are other statements, which will be explained in this chapter
or in subsequent chapters describing special features.

Syntaxgraph 4: statements
Expressions are common parts of statement syntax. Expressions will be
explained in chapter 6.

5.1 Assignments
In general you can assign values to channels, output channels and variables.
The script language makes a distinction between variable assignment and
channel assignment with different syntax.

5.1.1 IF-statements

Illustration 1: if-statement

If-statements are the main program control flow mechanism in UltraScript.

If the expression after IF keyword is evaluated to a nonzero value it is
considered true and the statements after THEN will be executed. If it is zero
the next ELSIF will be tried. If no IF or ELSIF expression is nonzero the ELSE
statements will be executed, if it exists.

ROUTINE IfExamples
 BEGIN
 IF Temp > 95 THEN

14

 Warning <- 1;
 ELSE
 Warning <- 0;
 ENDIF;

 IF Temp > 80 THEN
 Valve <- 100;
 ELSIF Temp > 60 THEN
 Valve <- 60;
 ELSIF Temp > 40 THEN
 Valve <- 20;
 ELSE
 Valve <- 0;
 ENDIF;

 IF Force THEN
 Valve <- FValue;
 ENDIF;
 END;

5.1.2 Variable Assignment
Variable assignment is done using a Pascal like hard assignment with ‘:=’.
The variable is local to the routine, so you can be sure that it will have the
assigned value until it is assigned another value in the same routine.

Syntaxgraph 5: assign_var

When the application is started or restarted, all variables begin with the value
zero.

5.1.3 Channel Value Assignment
Channels are assigned new values using the ‘<-’ syntax, as shown in the IF-
statement example. This arrow-like operator mean you are putting a value
into the channel. The channel is global to the application, and can be affected
by other routines and other functionality the channel has. You can therefore
not be sure that it will continue to have the value that has been assigned to
it.

Channels can also be connected to the outside world so when assigning a
channel it can affect physical outputs, which indeed in the end often is the
purpose of the application.

The purpose of having two assignment operators ‘:= ’ and ‘<-’ is to make this
potential different effect visible.

15

More details about channels are described in chapter 7. Assigning values to
sub application channels is described in the chapter 10.

5.2 Call Statements
The call statement is invoked to execute a subroutine, a subapplication, a sub
routine of a subapplication or a group iterator. The syntax graph below also
describes assignment to subapplication input channels.

Syntaxgraph 6: subapplication_statement
Making a call to a subapplication, as in the example in 3.1.1, causes all the
routines in that application to be executed. Calling a specific subroutine in the
same application or in a subapplication executes only that specific subroutine.

APPLICATION ScriptExample
INPUTS
 Run;
 Reset;
 Angle;
 Position;
OUTPUTS
 Signal;
SUBAPPLICATIONS
 InvertedPendulum;

SUBROUTINE RestPosition
BEGIN
 IF ABS(Position) > 0.5 THEN
 Signal <- -25 * SIGN(Position);
 ELSE
 Signal <- 0;
 ENDIF;
END;

ROUTINE Main
BEGIN
 IF Run THEN
 InvertedPendulum.Angle <- Angle;
 InvertedPendulum.Position <- Position;
 CALL (InvertedPendulum.Update);
 Signal <- InvertedPendulum.Signal;
 ELSIF Reset THEN
 CALL (RestPosition);
 ELSE
 Signal <- 0;

16

 ENDIF;
END;

END APPLICATION;

Group scripts and iterators are explained in chapter 13.

5.3 Print Statements
Print statements can be used for debugging purposes. A line of text can be
printed to the application print. The application log is a circular buffer so
excessive printing may hide older interesting information.

Syntaxgraph 7: print_statement
DATE and TIME adds current date and time to the string. Note that no extra
spaces are added before an expression value. Add a space as the last
character in a string to separate it from a following value.

PRINT(DATE, TIME, “Temp “, Temp);

This example will print a string like:

2013-11-04 10:32:45 Temp 95.3

5.4 Logentry Statements
A logentry statement puts a message into the alarm log. This can be used to
correlate important events with alarms in a system, like start and stops of
machinery, or entry into special operating modes. Beware however that
logentry messages may quickly fill the alarm log if overused. The alarm log
has a limited number of entries and the oldest will be lost when a new is
entered.

Syntaxgraph 8: logentry_statement
The logentry statement has a similar syntax as the print statement, except

17

that the time and date keywords cannot be used. The log entry message will
receive a time stamp in the log anyway.

Example:

LOGENTRY(“Summer blocking activated. (“, Temp, “ °C)“);

This logentry could be used when a heating system passes a limit that makes
it entry a summer mode, when heating is blocked.

18

6 Expressions
Expressions are syntactic constructs that evaluates to a single value. This
includes among others constant numbers, names of variables and channels,
mathematical operators and functions.

Syntaxgraph 9: expression

6.1 Numbers
The syntax for numbers is intuitive. A dot is used as decimal separator.

Syntaxgraph 10: number

6.2 Resource Names
All names defined in the application declaration, except curves and sub
applications, can be used in expressions. They will represent the present
value of the resource it represents.

Variables declared in a routine declaration can be used in expressions within
that routine. Buffer names and routine names have no value associated with
them and cannot be used in expressions.

19

6.3 Operators

6.3.1 Unary Operators

Syntaxgraph 11: unary_operator
An unary operator is an operator that operates on a single operand. The
operand is to the right of the operator. The minus sign will negate the value
standing on the right side of it. This means that writing –1.23 becomes
syntactically correct.

The NOT operator is a Boolean operator. All Boolean operators treat a nonzero
value as true and zero as false. The not operator will make nonzero values
zero, and change zero values to the nonzero value of one. All Boolean
operations in the script language resulting in the value true will be
represented by the value one.

6.3.2 Infix Operators
Infix operators work on two operands, and is placed between the two
operands. In an expression with infix operators precedence is important. 4 /
2 + 2 is 4 and not 1, because the / operator has higher precedence than +.
UltraScript uses standard mathematical precedence. (Note; this may differ
from precedence order of gps-scripts int the WMPro.)

Syntaxgraph 12: infix_operator

20

The table below lists all infix operators.

Operator Boolean result Comment

XOR X Logic exclusive or
OR X Logic or
AND X Logic and
^ Power, x^y is the same as xy.
* Multiplication
/ Division
MOD Modulus, 11 MOD 5 is 1.
- Subtraction
+ Addition
<> X Not equal
<= X Smaller than or equal
>= X Bigger than or equal
< X Smaller than
> X Bigger than
= X Equal
& Bitwise and
| Bitwise or

Operators with a Boolean result will return either one or zero.

6.3.3 Parenthesis
Parenthesis can be used to enforce or clarify precedence behavior. An
expression between parentheses is treated as a separate expression.

21

6.4 Reserved Functions
Reserved functions are mathematical functions that take an argument and
return a calculated value. There are also reserved functions that need no
argument. The constant PI works the same way, but is a reserved constant.

Most functions are standard library functions and should not require any
comments. Angels are presented in radians. The SIGN function returns –1 for
negative arguments, 1 for positive and 0 if the argument is zero.

RAND and RANDN return random numbers. RAND returns a uniformly distributed
random number between 0 and 1. RANDN returns numbers with the
approximate N(0,1) normal distribution.

TIME returns current time in seconds. The other time functions returns
different parts of current time and date. TIME_SEC for example returns a
value between 0 and 59, based on the real time clock. Note that the real time
clock can be changed by a user or SNTP update. If you need a time counter
that is constantly increasing you can achieve this by adding one to a variable
for every call to a routine. When an application is running its routines will be
called once every second.

22

Syntaxgraph 14: reserved_function

23

6.5 Other Expressions
There are other syntactically correct expressions closely related to specific
resources. These are explained in separate chapters.

6.6 Examples and Error Handling
There are expressions that in some cases cannot be evaluated. In many
program languages this results in an exception or in a crash. In a controller
application this may be dangerous. A poorly written program may run
perfectly for years before it encounters a situation that cannot be evaluated.
Rather than crash, the UltraScript interpreter handles such errors by the best
it can. The result of a division by zero is infinite. The script parser cannot
calculate with infinity, therefore it evaluates division by zero to a very large
number, that in every practical sense is close to infinity.

Below is a table with example expressions and what they evaluate to. X, y
and z are variables assigned the values 4, 2, and 100.

x := 4.000000
y := 2.000000
z := 100.000000

x^y+0.5*z 66.000000
SIN(PI/2.0) 1.000000
FLOOR(11/5) 2.000000
11 MOD 5 1.000000
x=2 0.000000
x=2*y 1.000000
x AND y > z 0.000000
SIGN(x * -PI) -1.000000
SQRT(x) 2.000000
SQRT(-1) 0.000000
2/0 999999939489602418518643389688.804746
LN(-1) -999999939489602418518643389688.804746
LOG10(0) -999999939489602418518643389688.804746

The last four examples are examples of illegal mathematical operations. They
do however give results anyway. The results are the most reasonable results
possible, and will prevent the system from crash. The last three are large
numbers that represents positive and negative infinites.

24

7 Channels
Channel declarations are explained in 3.1.4. All channels can be used in
expressions but input channels cannot be assigned new values.

Apart from the channel value itself there are expressions and statements
regarding manual override of channels. A syntax graph for channel
statements is shown below. A combined syntax graph for channel and alarm
expressions is shown in chapter 8.

Syntaxgraph 15: channel_statements

7.1 Manual Override
It is possible to manually override a channels value. When overridden by a
user the value assigned to it by script is hidden. All references to its current
value will return the override value, both in expressions and when displayed.
When the override is disabled (or timed out) the last assigned value will be
used as current value again.

Whether a channel can be overridden or not is part of its settings (check
Allow Manual Override under Optional settings in a channel or IO-
channel edit dialogue).

In some cases it may be dangerous to override a channel value. It is
therefore possible to temporarily disable the possibility to override a channel
from script. When blocked by script the user cannot override the channel.
This is done by assigning one to channel.BLOCKMANUALOVERRIDE. Assigning
zero unblocks it again. This does not affect the user setting for enabling
manual override for a channel. If it is not enabled, unblocking it will not
enable manual override. As a statement channel.BLOCKMANUALOVERRIDE
return zero if manual override is enabled and not blocked, else one.

MANUALOVERRIDE in expression returns one if the channel is in manual
override, else zero. Assigning 1 or 0 to MANUALOVERRIDE sets manual
override on and off as if the user had done it. This means that it will not be
enabled if manual override is not enabled or blocked. Note that enabling or

25

disabling manual override from script only lasts for one cycle, until the script
is executed again. This may or may not, depending on the script in question,
execute the override again.

There are also functions like statements that do the same thing for backward
compatibility with WMPro. CLRMANUALOVVERIDE(channel) and
SETMANUALOVERRIDE(channel) clears and sets manual override , equivalent
to assigning channel.MANUALOVERRIDE <- 0 and channel.MANUALOVERRIDE
<- 1.

BLOCKMANUALOVERRIDE(channel) and UNBLOCKMANUALOVERRIDE(channel)
does the same thing or channel.BLOCKMANUALOVERRIDE.

ISMANUALOVERRIDE(channel) is an expression that returns one if the channel
currently is overridden, like channel.MANUALOVERRIDE.

7.2 Count Total Active Manual Overrides
The special keyword MO_CountActiveTotal returns the number of manual
overrides that are active for any Channel or IOChannel in the device. (It is
available from release 1.48.)

The intended use is to make it possible to trigger an alarm if there are any
manual overrides active.

26

8 Alarms
All alarms belong to a channel. They monitors the channel and are either
active = 1, or inactive = 0. Alarm declarations are explained in 3.1.4.

Syntaxgraph 16: channel_and_alarm_expressions
To use the alarm status in an expression write the channel name dot alarm
name (channelname.alarmname). It is also possible to access several alarm
property values in expressions.

It is not possible to assign values to alarms but it is possible to disable and
enable alarms.

Syntaxgraph 17: alarm_statements
You can acknowledge a single alarm or all alarms belonging to the application
and its sub applications. The string argument is the string used as signature.
The intended use of these functions is to connect a pushbutton to an input
and use it as an alarm acknowledgement button.

27

8.1 Blocking Alarms
It can be very useful to disable alarms when a plant is in a state where it is
not valid, or when a function in an application is not used.

It is possible to write to the BLOCKED property of an alarm, which is a
boolean. For backward compatibility there are also DISABLEALARM and
ENABLEALARM statements.

In blocked state an alarm cannot become active. Active alarms becomes
inactive when blocked. If there is an active alarm that needs to be
acknowledged, it remains active until it is acknowledged.

28

9 Curves
A curve is an interpolating lookup table, presented as a configurable curve. It
can be called in expressions like a function with an argument.

Syntaxgraph 18: curve_expression
The value of the argument expression is used as a point on the x-axis, and
the corresponding value on the y-axis is returned.

29

10 Subapplications

Syntaxgraph 19: subapplication_expression

Syntaxgraph 20: subapplication_statement

30

11 Buffers
A buffer is a local variable in a routine that can hold many values. When
defined it is decided how many values it can hold as a maximum. This
number must be between 2 and 4000. The syntax for defining a buffer is
described in chapter 4.

11.1 Buffer Statements

Syntaxgraph 21: buffer_statement
A buffer starts empty. The INSERT statement inserts a value as first element
in the buffer. If there are elements in the buffer they will be shifted left (if
you presume the rightmost value is the first). If the buffer is full the last
value will be lost.

Then INSERTLAST statement is equivalent to INSERT, but it inserts the value
last, and the first element is lost if the buffer is full.

The REMOVEFIRST and REMOVELAST statements remove one value from either
end of the buffer, if it is not empty. CLEAR removes all values from the buffer
so that it becomes empty.

The SORT statement sorts the values in the buffer so that the smallest value
becomes the first and the largest the last.

11.2 Buffer Expressions
A buffer itself does not evaluate to a value. Using dot notation there are
however several statistical values that can be used, as well as some status
information. FIRST and LAST returns the first or last value in the buffer, or
zero if it is empty. MAX and MIN return the highest or lowest value, or zero if
the buffer is empty.

MEAN, MEDIAN, Q1, Q3 and IQMEAN returns statistical results. Q1 and Q3 returns
the first or last quartile. IQMEAN returns the mean value of the values
between Q1 and Q3. All these returns zero if the buffer is empty.

31

MAXSIZE returns the defined max size of the buffer and SIZE returns the
current number of values in the buffer. FULL returns 1 if the buffer is full, else
zero.

Syntaxgraph 22: buffer_expression

32

12 Communication monitoring (portal)

It is possible to access the status of the portal update and thus implement a
restart function of a modem or similar.

StatusPortalAbelko <- SYSSTAT.PortalStatus(1);
The above line returns the status of the portal update for the first defined
portal and sends that value to the variable StatusPortalAbelko.

The status codes available are as follows, starting at 0:

PORTAL_STATUS_NOTUPDATED, // until it is updated once

PORTAL_STATUS_DISABLED, // after it has run once and is disabled it will
get this status

PORTAL_STATUS_UPDATED, // updated ok

PORTAL_STATUS_UPDATEERROR, // some error in com with portalserver

PORTAL_STATUS_DENIED, // portalserver said 403

PORTAL_STATUS_INTERNALERROR // curl error

If everything is ok and the portal is updated, you get a status
PORTAL_STATUS_UPDATED, i.e. a 2nd in the variable StatusPortalAbelko.

ErrorPortalAbelko <- SYSSTAT.PortalErrorCounter(1);
The above line indicates how many failed attempts were made to update the
portal. Resets on a successful attempt.

33

13 Groups
Groups can be created to handle groups of things, like external units of the
same type, or instances of collections of channels. Groups lets you write
iterators that executes the same code for every thing in the group, and lets
you get statistical values from the group. Conditions can be defined for what
things are included in the group, and it may be sorted.

There are three common scenarios where group scripts are very useful.

1. Prioritization tasks, like run time equalization, where you choose
which thing to start or stop with varying demand depending on a
prioritization criteria, like run time.

2. Statistical readouts; When you have many sensors connected on a
communication bus, and want the mean, max or min value, a group
will produce that easily. A group can handle a varying number of
sensors being connected and going offline.

3. Plug and play functionality; A group can be set up to include all
external devices of a defined type connected to a communication
port. With a group iterator it can be given instant functionality when
it is connected. An IO unit type may be programmed to start
working as a shunt group controller, so that the installer can add any
number of shunt groups without using the graphical programming
tool.

You will need to understand GFBI, AEACOM or COLLECTION described later to
fully understand and utilize GROUP scripts.

13.1 Group Syntax

Syntaxgraph 39: group

34

A group is defined in an application, at the same level as a ROUTINE. Chapter
13.4 contains a complete example.

A Group may reference GFBI or AEACOM units, or a COLLECTION. The identifier
after the GFBI or AEACOM keyword must match the TYPEID identifier of a
communication definition script. If the optional TYPEID keyword is missing in
a definition script, it must match the NAMED identifier. If the identifier does
not match any installed script, you will get a syntax error. Note that
communication definition scripts are not included in a template.

The COLLECTION keyword must be followed by a collection identifier already
defined in the same application.

The SELECT keyword must be followed by an expression that evaluates to
true or false, or the keyword ALL. The select expression can reference values
in the things the group references. These are declared as PARAMETER, PUBLIC
and PRIVATE in communication definitions, and INPUTS, OUTPUTS and
PRIVATE in collections. Only items for which the expression is true will be
included.

ONLINE is a special selection keyword that prescribes that only external units
with status OK will be included.

SORT BY is an optional sorting order expression. The items will be sorted in
ascending order for iterator execution.

13.1.1 Iterator
A group can contain zero or more ITERATOR declarations. The statements
between BEGIN and END will be performed once for each item in the group. In
iterator mode expressions and statements may contain values declared for
the type of item the group contains, and some special expressions are
available.

Syntaxgraph 40: IteratorMode statements

and expression (left)

35

Explanations of the automatic variables that can be used in expressions in an
iterator:

Name Value
Index Index in the group members list. Starts at one and ends at

Count.
Count The number of members in the group.
Status Device status: 0 = OK, 1 = FAILED, 2 = TRYING
First One during the first execution of an iterator, when Index is one.

Else zero.
Last One during the last execution of an iterator, when Index =

Count. Else zero.
DevIn-
dex

The index in the external devices list for the device the iterator is
currently operating on.

It is important to know that if status is used in a communication script for a
variable it is not possible to reach that value because it is overridden by the
automatic variable status that hold the device status. Status is however not a
reserved word but due to the reasons given it is not recommended to use as
a variable name anywhere in scripts.

13.2 Group statements and expressions
A previously defined GROUP can be referenced in routines and subroutines.

Iterators can be invoked using a CALL statement.

Syntaxgraph 41: Group statement
Properties of the group can be

used in expressions.

Syntaxgraph 42: Group expression

36

Note that private variables cannot be accessed outside iterators. COUNT
returns the number of items in the group. Keywords after an item value
identifier denotes different statistical properties. Most are quite self-
explanatory. STD is standard deviation, MEDIAN is the middle value, Q1 and Q3
is the first and third quartile values.

37

13.3 Collection
Collections is a way to define ‘things’ to make groups of in an application
script. A type definition defines what the things in the collection all consists
of, and instances connects the things to channels and parameters.

Syntaxgraph 43: Collection
Each INSTANCE creates an instantiated collection where the INPUTS and
OUTPUTS defined in the TYPEDEF section are set to alias channels or
parameters defined by the APPLICATION.

INPUTS corresponds to PARAMETER in a communication script. An iterator can
not change the value of an input, and inputs may be connected any channel
or parameter.

OUTPUTS can be changed by iterators, and can therefore only be connected to
channels declared as CHANNELS or OUTPUTS in the APPLICATION. PRIVATE
declares local variables that can not be connected to anything else.

The naming aliasing created the collection definition can be used in regular
scripts to, using dot notation like the example:

CollectionX.InstanceY.OutputZ <- CollectionX.InstanceY.InputQ;

13.4 Example
Below is a small example of how group scripts and collections may be used.

APPLICATION CollectionDemo
 INPUTS
 Rel1_MO;
 Rel2_MO;
 Rel3_MO;

38

 Demand;
 OUTPUTS
 Rel1_Out;
 Rel2_Out;
 Rel3_Out;

 CHANNELS
 Rel1_OnTime;
 Rel2_OnTime;
 Rel3_OnTime;

 Count_Total;
 Count_On;
 Count_Off;

 Count_Demanded;

 COLLECTION Something IS
 TYPEDEF
 INPUTS
 Blocked;
 OUTPUTS
 Run;
 RTime;
 END;
 INSTANCE Thing1 IS
 Blocked = Rel1_MO;
 RTime = Rel1_OnTime;
 Run = Rel1_Out;
 END;
 INSTANCE Thing2 IS
 Blocked = Rel2_MO;
 RTime = Rel2_OnTime;
 Run = Rel2_Out;
 END;
 INSTANCE Thing3 IS
 Blocked = Rel3_MO;
 RTime = Rel3_OnTime;
 Run = Rel3_Out;
 END;
 END;

 GROUP AllThings OF COLLECTION Something SELECT ALL
 ITERATOR Update
 BEGIN
 RTime := RTime + Run;
 IF Blocked THEN
 Run := 0;
 ENDIF;
 END;
 END;

39

 GROUP OnThings OF COLLECTION Something
 SELECT (Run = 1 AND Blocked = 0)
 SORT BY RTime
 ITERATOR StopOne
 BEGIN
 IF Last THEN
 Run := 0;
 ENDIF;
 END;
 END;

 GROUP OffThings OF COLLECTION Something
 SELECT (Run = 0 AND Blocked = 0)
 SORT BY RTime
 ITERATOR StartOne
 BEGIN
 IF First THEN
 Run := 1;
 ENDIF;
 END;
 END;

 ROUTINE Main
 BEGIN
 Count_Total <- AllThings.COUNT;
 Count_On <- OnThings.COUNT;
 Count_Off <- OffThings.COUNT;

 CALL(AllThings.Update);

 Count_Demanded <- ROUND((Demand / 100) * Count_Total);

 IF Count_On < Count_Demanded THEN
 CALL(OffThings.StartOne);
 ELSIF Count_On > Count_Demanded THEN
 CALL(OnThings.StopOne);
 ENDIF;
 END;
END APPLICATION;

40

This could be an application to start and stop cooling fans depending on the
Demand input channel, ranged from 0 to 100 %.

Each fan represented by the collection of

• A Run channel output, connected to a relay

• A Blocked channel, connected to a Manual override signal

• A RTime channel to store running time, connected to a persistent
channel

Three Instances are defined, so the example fits in an UltraBase20.

The AllThings group includes all defined instances. It is used to count how
many instances there are. It also has an iterator Update that counts up the
running time if it is running, and ensures that the output is turned off if the
Block signal is high.

The OnThings group includes only things that are on and not blocked. It is
sorted by running time. The iterator StopOne uses the Last keyword to set
the Run channel of the thing with the highest running time off.

The OffThings gropup is the opposite. It includes things that are off, and has
the iterator StartOne that set Run on for the thing with the shortest running
time.

The Main routine updates a few channels to display how many things (fans)
are running and not running, and calls the Update iterator for the AllThings
group.

Count_Demanded is how many things (fans) that should be on, and is
calculated from the Demand input and how many are available.

If the number of things that are on is different from the demand, one is
started or stopped using iterator calls. The iterators ensures that running
time is distributed equally among the things. If one thing becomes blocked,
the Update iterator will turn it off. The number of OnThings decreases, so
another thing will automatically be started, if available.

Some additional notes. A group may be empty, containing zero things.
Statistical values for empty groups will return zero, or infinity. When calling
an Iterator for an empty group it will be performed zero times.

Maximum things in a group is 1024, if not explicitly defined to a lower
number.

41

14 Objects
Will be implemented in later releases.

42

15 GFBI
The DEVICETYPE definition defines a class of external devices on RS485 using
the General Field Bus Interface (GFBI). GFBI can handle protocols on the
RS485 that follows these criteria:

• The WMultra is master; slaves are quiet unless they answer a
question from the master.

• The size of a correct answer to a specific question is constant and
known.

• Data is in binary form, no strings.

• The checksum or CRC method can be handled by GFBI (should be
True for most protocols.)

Different device types using different protocols can be connected at the same
time, given that they do not interfere with each other.

The GFBI handles telegrams. The device type definitions define how a
question telegram should be compiled. The GFBI motor sends this telegram
on the RS485 line and starts to listen for an answer of the correct size. If one
is received within the timeout period it is parsed using the reply definition.

15.1 The Device Type Definition

15.1.1 Overview
Each device type has a name visible in the user interface and an identifier,
used in scripts and as identifier in the parameter bank. For backward
compatibility it is possible to use a type number. If used, the type number
will be used as identifier. The identifier must be unique in a WMultra.

The definition contains a number of variables. Some used as parameters with
public names, other used as values with public names and some are for
internal script use only.

The communication speed and checksum type is defined for all telegrams and
then the telegrams themselves are defined. Telegram definitions consist of a
question compiler and an answer interpreter. They also have public
descriptive names.

A scheduler is an optional part of a device type definition. If used, it contains
script code run every second to decide which telegrams to send.

43

15.1.2 WMPro / WMultra Compatibility and Differences
The WMultra GFBI motor is backward compatible and accepts all device type
scripts written for WMPro. WMultra syntax has however been extended to
enable simpler and more versatile scripts.

The first difference is that TYPEID can be omitted. The ID is a string in
WMultra, and the name string will be used as ID if TYPEID is not present. For
WMultra the recommendation is to not declare a TYPEID number.

The second difference is the possibility to support multiple languages for
public names in the script. This is optional but recommended for scripts that
will be used in many countries.

The syntax for telegram parsers and interpreters has been more relaxed. It is
now possible to write this code as any other script code, with special
extensions. This makes the code easier to read and more powerful. It can
also handle more data types.

The last major difference is the introduction of the SCHEDULER script. This
code is run every second and defines when a telegram should be sent. This
enables a more precise control of the telegrams and can be used to
implement state machines that ensures that telegrams are sent in a specific
order, or only when necessary.

Another difference not visible in script code is in the enqueuing of telegrams.
In WMPro each device could just have one telegram enqueued at a time. In
WMultra the telegrams can be enqueued independently of each other. This
means that several telegrams can be exchanged with a single device every
second.

44

15.1.3 Syntax
Below is the syntax graph for a device type definition. There is no need to be
overwhelmed, there will be examples later.

Syntaxgraph 23: devicetype

Parameters are outputs or settings. Public values are input values. Both can
have formatting specifications in the script.

Syntaxgraph 24: public_value

45

The checksum part of the script defines if any checksum or crc is used. The
crc used in modbus is predefined, but generic crcs can be defined and some
simple checksums as well. Skip and postbytes defines bytes not included in
the checksum.

Syntaxgraph 25: checksum

Syntaxgraph 26: crcspec

A telegram is the combination of a message sent from the master and the
returned answer.

Syntaxgraph 27: telegram

A scheduler defines when telegrams are sent. If not defined in script a

46

default scheduler is used.

Syntaxgraph 28: scheduler

The statements in a telegram and scheduler are extended with special
syntax depending on the mode. This mode also extends to expressions.
Below are syntax graphs for these extensions.

Syntaxgraph 29: statement_TelegramCompilerMode_

Syntaxgraph 30:
statement_TelegramCompilerModeData_

Syntaxgraph 31: telegram_InterpreterMode_

Syntaxgraph 32: expression_InterpreterMode_

Syntaxgraph 33: expression_InterpreterModeData_

47

Syntaxgraph 34: statements_SchedulerMode_

Syntaxgraph 35: expression_SchedulerMode_

The syntax graph below defines the keywords for data access in telegrams:

48

Syntaxgraph 36: telegram_datatype

15.1.4 Example
The example below illustrates many of the possibilities in a WMultra
devicetype definition.

DEVICETYPE WMultraDemo NAMED "WMultraDemo" IS
 PARAMETER
 Address : "Address" INT
 | (sv) "Adress"
 | (en) "Address";
 DO1 : "DO1" INT
 | (sv) "Reläutgång"
 | (en) "Relay output";
 PUBLIC
 AIN1 : "AIN1" ["%"] DEC1
 | (sv) "Analogingång 1"

49

 | (en) "Analogue input 1";
 AIN2 : "AIN2" ["%"] DEC1
 | (sv) "Analogingång 2"
 | (en) "Analogue input 2";
 PRIVATE
 DO1readback;
 LastDO;
 State;
 BAUDRATE 115200;
 DATABITS 8;
 PARITY NONE;
 STOPPBITS 1;
 CHRGAPTIMEOUT 4;
 CHECKSUM MODBUS SWAPPED;

 TELEGRAM ReadInputs NAMED "ReadInputs"
 | (sv) "Läs ingångar"
 | (en) "Read Inputs"
 IS
 QUESTION
 IF State = 0 THEN
 DATA[0] := BYTE(Address);
 DATA[1] := HEX(03);
 DATA[2] := HEX(00);
 DATA[3] := HEX(14);
 DATA[4] := HEX(00);
 DATA[5] := HEX(04);
 ELSE
 DATA[0] := BYTE(Address);
 DATA[1] := HEX(03);
 DATA[2] := HEX(00);
 DATA[3] := HEX(58);
 DATA[4] := HEX(00);
 DATA[5] := HEX(01);
 ENDIF;
 ANSWER SIZE 7 TO 13
 IF State = 0 THEN
 DATA[0] = BYTE(Address);
 DATA[1] = HEX(03);

50

 DATA[2] = HEX(08);
 AIN1 := RWORD[3] / 655.36;
 AIN2 := RWORD[7] / 655.36;
 State := 1;
 ELSE
 DATA[0] = BYTE(Address);
 DATA[1] = HEX(03);
 DATA[2] = HEX(02);
 IF RECEIVEDANSWERSIZE = 7 THEN
 DO1readback := BYTE[04];
 ENDIF;
 State := 0;
 ENDIF;
 TIMEOUT 300
 END;

 TELEGRAM WriteDO NAMED "WriteDO"
 | (sv) "Ställ relä"
 | (en) "Set relay"
 IS
 QUESTION
 DATA[0] := BYTE(Address);
 DATA[1] := HEX(10);
 DATA[2] := HEX(00);
 DATA[3] := HEX(03);
 DATA[4] := HEX(00);
 DATA[5] := HEX(04);
 DATA[6] := HEX(08);
 DATA[7] := RWORD(DO1);
 ANSWER SIZE 8
 DATA[0] = BYTE(Address);
 DATA[1] = HEX(10);
 TIMEOUT 300
 END;

 SCHEDULER BEGIN
 DEFAULT(ReadInputs); %Transmit telegram
 %according to normal settings

 IF DO1 <> DO1readback OR DO1 <> LastDO THEN

51

 TRANSMIT(WriteDO); %Transmit telegram if DO has
 %changed or mismatches
 IF ReadInputs.ISIDLE THEN
 State := 1; %If telegram is idle set it
 %to readback DO1
 ENDIF;
 TRANSMIT(ReadInputs); %Transmit read telegram to
 %readback DO1
 LastDO := DO1;
 ENDIF;
 END;
END;

15.2 Semantics Explanation

15.2.1 First Row
The first row, from DEVICETYPE to IS, is not very complicated. The identifier
directly after the DEVICETYPE keyword is the id of the devicetype and must
be unique in the WMultra. To avoid potential errors and confusion they should
be truly unique. If this line contains the optional TYPID number, this number
will be used as id string instead.

The NAMED string is the name for the device type as it will be presented to
users.

15.2.2 PARAMETER, PUBLIC and PRIVATE
After the PARAMETER keyword all parameter variables are defined. The
definition consists of an identifier and a name string. After the name string
comes, optionally, a unit string and a format specifier. The name string is
used as the default string, but it is possible to add language specific
alternatives for the name string. These consist of a language code and a
string. The example contains English and Swedish translations.

In the script PARAMETER variables are not assignable.

The variables after the keyword PUBLIC are pretty much the same, but these
are true variables and their string names and values are presented on the
external devices page in the user interface.

Variables defined after PRIVATE does not have an associated string as they

52

are not presented to the user. They are used only as script variables.

15.2.3 BAUDRATE to CHECKSUM
The BAUDRATE definition sets the baudrate for all telegrams. The number
must be between a valid number. On the WMultra platform the following
numbers are valid:

50,75,110,134,150,200,300,600,1200,1800,2400,4800,9600,19200,38400,5
7600,115200,230400,460800,500000,576000,921600,1000000,1152000,15
00000,2000000,2500000,3000000,3500000,4000000.

DATABITS is the number of bits in each transmitted byte. 7 or 8 are valid
numbers. If omitted 8 is default.

PARITY may be ODD, EVEN or NONE, where none is default if omitted.

STOPPBITS may be 1 or 2, where 1 is default.

CHRGAPTIMEOUT defines how long silence, expressed as number of bytes, that
triggers an end of telegram event. Default is 4, which is consistent with the
modbus specification.

The CHECKSUM definition defines what kind of checksum is being used on the
telegrams. It is used both on questions and replies.

SUM8 is simply the sum of all bytes, stored in a single byte. ZSUM8 is the same
thing, but the checksum value is such that the sum of all bytes including the
checksum is zero.

The optional SKIP number defines that a number of bytes in the beginning
should not be part of the checksum.

SUM16 and ZSUM16 is basically the same thing, but with word (16 bit) size
sums. For these there is also the option SWAPPED. In the WMultra a multibyte
checksum (unlike other multibyte datatypes) is default in big endian format,
with the high byte first. If the protocoluses little endian checksum, use
SWAPPED.The MODBUS keyword sets the checksum to be a modbus style CRC.
The SWAPPED and SKIP keywords can be used here to. The CRC8 and CRC16
keywords starts a general CRC definition.

If the checksum is not placed last in the telegram, use the POSTBYTES
keyword to define how many bytes that comes after the checksum.

For Modbus write MODBUS SWAPPED as in the example.

53

15.3 Semantics Explanation: Telegram Definitions
A device type definition can contain several telegram definitions. Each
telegram defines a name string that is presented to the user. This string can
be defined for different languages.

15.3.1 Question Compiler Definition
The question part of a telegram definition states how the frame sent to the
external device should look like. Each byte of the frame must be defined. This
is done by assigning values to a data array. DATA[n] represents the n’th byte
in the frame. It can be assigned to a value using colon equals “:=”
assignment.

The simplest form of assignment is using HEX, where the byte is assigned a
constant hex value. The HEX function only accepts a single byte value,
described by two letters. A to F must be capital when used.

The BYTE, WORD and WORD32 and the other telegram_datatype keywords
takes an expression as argument. The only identifiers in scope are the
variables and parameters defined in the DEVICETYPE, but calculations can be
made on them.

With the BYTE keyword the value is typecasted to a char and assigned to the
byte. WORD and RWORD typecasts the value to an unsigned integer, and assigns
it to byte n and n+1. WORD uses little endian and RWORD big endian. Larger
data types affect more bytes. See the separate telegram datatype definitions
in section, 15.5.

When using the left arrow assignment “<-” one or several statements are
expected between the left and right parentheses after the keyword. Allowed
keywords are BYTE, WORD, RWORD, and FLOAT. The execution of the statements
must result in that the special variable DATA (used without square brackets
within the left and right parentheses) is assigned a value.

DATA is an automatic variable that is in scope for these statements. The main
intended use for this construct is to allow IF-statements. This is an
assignment style used in WMPro and it is still valid in WMultra. In WMultra
statements are allowed freely in the question compiler. The <- assignment
construct is therefore not needed, nor recommended, unless WMPro
compatibility is required.

The GFBI automatically appends the checksum as defined after the highest
frame index used. If not all bytes in the frame are assigned a value the result
is unpredictable.

54

15.3.2 Answer Parser Definition
For an answer the expected size, in bytes, must be defined either as an exact
value or a range between a minimum and a maximum value. If the keyword
SIZE is omitted the maximum allowed range of 1 to 4096 will be used. Any
reply with the wrong size is considered faulty. The checksum must also be
correct. Counters keep track of sent and received telegrams, as well as
checksum errors.

Next step in validating the answer is by the answer parser. Individual bytes
and words in the received frame are accessible with the DATA[n] keyword, as
for the question compiler. Here data is not assigned, but with equal operator
a check is made that the data in the frame equals the expression on the right
side of the equal sign. The telegram_datatype keywords are used exactly as
they are in colon equals assignment in questions.
The automatic variables TIMESTAMP that gives a relative timestamp in
seconds for the received answer, and RECEIVEDANSWERSIZE that gives the
size in bytes of the received answer, are also available.

If one or more equalities do not hold, the frame is considered faulty. A format
error counter will be increased. The parsing will stop when the first mismatch
is found.

Public and private variables can be assigned values containing data from the
buffer. The telegram datatype keywords can be used in the expressions,
followed by a buffer index within square brackets.For backward compatibility
with WMPro right arrow assignment “->” is also possible. This is similar to
the left arrow assignment in the question compiler definition but goes in the
other direction. The telegram_datatype keywords are allowed, and
statements are expected between the left and right parentheses. The
difference is that the automatic variable DATA (used without square brackets
within the left and right parentheses) will have been assigned with the value
from the frame. Use this construct only if WMPro compatibility is necessary.

15.3.3 TIMEOUT
The last part of a telegram definition is the timeout. This is the number of
milliseconds the GFBI will wait for a reply before giving up.

15.4 Semantics Explanation: SCHEDULER
The main purpose of the scheduler is to define when to send certain
telegrams. If not present a default scheduler is used. The default scheduler
uses the telegram setting where the user defines how often a telegram

55

should be enqueued.

In the scheduler code use the TRANSMIT statement to enqueue a telegram for
sending. You can also use the DEFAULT statement to let the telegram be
scheduled according to the default update time setting. See the code
example (15.1.4) where the ReadInputs telegram is scheduled with DEFAULT.

In the example the scheduler is used to transmit the WriteDO telegram only
when the DO1 parameter is changed, or its actual state as read by
ReadInputs differs from the parameter. The example also uses the possibility
to read the status of a telegram. In this case to read back the DO1 status as
soon as it has been written.

The order in which TRANSMIT is called for different telegram during a single
run of the scheduler script does not decide the order in which they are
transmitted. The TRANSMIT statements only changes the status of the
telegram to scheduled, which means that it will be compiled and enqueued in
the next step. If two telegrams are scheduled the same second they will be
enqueued in the order they are defined.

Calling TRANSMIT on a telegram that is already enqueued and has not
received an answer has no effect.

56

15.5 Telegram datatype definitions
The available datatypes are shown in Syntaxgraph 36. They are used to
describe how data is represented. What they mean is explained in the table
below.

Keyword Bytes Description

BYTE 1 Unsigned 8 bit byte

SBYTE 1 Signed 8 bit byte

WORD 2 Unsigned 16 bit word, little endian [BA]

RWORD 2 Unsigned 16 bit word, big endian [AB]

INT 2 Signed 16 bit word, little endian [BA]

RINT 2 Signed 16 bit word, big endian [AB]

WORD32 4 Unsigned 32 bit word, little endian [DCBA]

RWORD32 4 Unsigned 32 bit word, big endian [ABCD]

WSWORD32 4 Unsigned 32 bit word, little endian [CDAB], WS, Word
Swapped NOTE: Incorrectly named! (Should have been
BSWORD32)

BSWORD32 4 Unsigned 32 bit word, little endian [BADC], BS, Byte
Swapped NOTE: Incorrectly named! (Should have been
WSWORD32)

INT32 4 Signed 32 bit word, little endian [DCBA]

RINT32 4 Signed 32 bit word, big endian [ABCD]

FLOAT 4 IEEE 745, little endian [DCBA]

BSFLOAT 4 IEEE 745, little endian [CDAB]

WSFLOAT 4 IEEE 745, little endian [BADC]

RFLOAT 4 IEEE 745, big endian [ABCD]

DOUBLE 8 64 bit floating point, little endian [HGFEDCBA]

RDOUBLE 8 64 bit floating point, big endian [ABCDEFGH]

For multibyte values the byte order is important. Byte order is described with
the order of letters A-H (or a subrange thereof), where A represents the most
significant byte.

57

15.6 Telegram Expression Values Definition
When writing a scheduler the expressions described in Syntaxgraph 35 is
available. This includes special telegram values.

Keyword Semantics

TIMER The idle timer counts seconds in idle mode, i.e. how
long since it last left the queue. The timer is only
updated by the DEFAULT scheduler.

SETTING The user telegram setting value. For the default
scheduler this is how often the telegram should be
sent.

FAILCOUNT Counts failures. Is reset by a successful reply.

ISIDLE One if telegram is in idle state.

ISENQUEUED One if the telegram is enqueues.

ISTRANSMITTED One if the telegram has been sent out on the bus and
is awaiting a reply.

ISDISABLED One if telegram is disabled.

RECEIVEDANSWERSIZE The size in bytes of the received answer.

Below is a simple status diagram that describes how a telegram changes
between states.

58

16 AeACom
AeACom type definitions is used for expansion modules and other devices on
the AeACom bus. It is similar to the GFBI type definitions, but with some
differences.

In AeACom the master sends out a sync frame that defines time slots. The
slaves selects one time slot and sends a telegram to the master. The master
then sends an acknowledge message to the slave. Thus, there is only one
telegram definition in a AeACom type definition.

Syntaxgraph 37: aeadevice
The NAMED,PARAMETER, PUBLIC and PRIVATE sections are the same as for a
GFBI telegram definition. There are no communication settings in the
definitions, as the protocol is known. The only telegram has its own syntax
graph.

Syntaxgraph 38: aeacom_telegram
The message part is the message sent by the slave device. The interpreter is
written in the same way a GFBI telegram interpreter (ANSWER) is written. The
acknowledge is the reply the Ultra sends to the slave. It is written in the
same way as a GFBI compiler (QUESTION).

59

17 GUI Formatting Codes
GFBI and AeACom type definitions may contain some special codes that tells
the Ultra user interface how to treat different inputs and outputs. This helps
to create a better user experience, especially for devices with much IO or
settings.

Nodes is one concept that is used to group inputs and outputs under sub
nodes in the graphical programming interface, and in external units interface.
It is normal to create one node for each physical IO, if it has many channels
associated with it.

Information can also be moved to a special settings menu. The user interface
will then create a settings menu for the associated node, or a device settings
menu if there is no associated node. These public or parameter channels will
not be available to connect in graphical programming.

Example code excerpt:

PARAMETER
 ComTimeout: "Com timeout" [""] INT
 | (sv) "Kommunikationstimeout"
 | (en) "Communication timeout"
 | (MENU) "YES";

 DI1_CounterReset :"DI1 Reset counter" [""] INT
 | (sv) "DI1 Nollställ räknare"
 | (en) "DI1 Reset counter"
 | (NODE) "DI1";
PUBLIC
 DI1 :"DI1" [""] INT
 | (sv) "DI1"
 | (en) "DI1"
 | (NODE) "DI1";

 DI1_Counter :"DI1 Counter" [""] INT
 | (sv) "DI1 Räknare"
 | (en) "DI1 Counter"
 | (NODE) "DI1";

The formatting codes uses special language keys. NODE defines the name of
a node. (MENU) “YES” defines that it is a menu element. If both NODE and
MENU are present it becomes a node menu item.

60

18 Script Editor Features
The script editor is a simple text editor with syntax highlighting, and some
features. Standard shortcut functions like Ctrl+C, Ctrl+V, Ctrl+X works for
copy and paste. Ctrl+Z is undo, Ctrl+Y redo.

18.1 Search and Replace
Use Ctrl+F to bring a search dialogue, and Ctrl+D for a search and replace.
Ctrl+G brings up a Goto line number dialogue.

18.2 Autocomplete and Shorthands
If you start to write a keyword and press Ctrl+Space, a list of suggested
keywords appear. If only one keyword maches it will be autocompleted.

Shorthands are used to get a script stub. Write the shorthand keyword and
press Ctrl+Shift+Space. For example, writing ife and then pressing
Ctrl+Shift+Space yields

IF () THEN

ELSE

ENDIF;

Other stub keywords are

Stub keyword Result

app APPLICATION outline

buff BUFFER definition outline

ife IF THEN ELSE outline

rout ROUTINE outline

srout SUBROUTINE outline

	Framsida Reference 1.15
	4688_025_Reference manual UltraScript 1.15
	1 Introduction
	1.1 Manual Version
	1.2 Other Manuals

	2 UltraScript
	2.1 Language Basics
	2.2 UltraScript vs WMPro Scripts

	3 Application Scripts
	3.1 Declaration
	3.1.1 Example
	3.1.2 Syntax Graph
	3.1.3 Names
	3.1.4 Inputs, Outputs and Channels - ChnDecl
	3.1.5 Routine Declaration Part

	4 Routines
	4.1 Syntax Graph

	5 Statements
	5.1 Assignments
	5.1.1 IF-statements
	5.1.2 Variable Assignment
	5.1.3 Channel Value Assignment

	5.2 Call Statements
	5.3 Print Statements
	5.4 Logentry Statements

	6 Expressions
	6.1 Numbers
	6.2 Resource Names
	6.3 Operators
	6.3.1 Unary Operators
	6.3.2 Infix Operators
	6.3.3 Parenthesis

	6.4 Reserved Functions
	6.5 Other Expressions
	6.6 Examples and Error Handling

	7 Channels
	7.1 Manual Override
	7.2 Count Total Active Manual Overrides

	8 Alarms
	8.1 Blocking Alarms

	9 Curves
	10 Subapplications
	11 Buffers
	11.1 Buffer Statements
	11.2 Buffer Expressions

	12 Communication monitoring (portal)
	13 Groups
	13.1 Group Syntax
	13.1.1 Iterator

	13.2 Group statements and expressions
	13.3 Collection
	13.4 Example

	14 Objects
	15 GFBI
	15.1 The Device Type Definition
	15.1.1 Overview
	15.1.2 WMPro / WMultra Compatibility and Differences
	15.1.3 Syntax
	15.1.4 Example

	15.2 Semantics Explanation
	15.2.1 First Row
	15.2.2 PARAMETER, PUBLIC and PRIVATE
	15.2.3 BAUDRATE to CHECKSUM

	15.3 Semantics Explanation: Telegram Definitions
	15.3.1 Question Compiler Definition
	15.3.2 Answer Parser Definition
	15.3.3 TIMEOUT

	15.4 Semantics Explanation: SCHEDULER
	15.5 Telegram datatype definitions
	15.6 Telegram Expression Values Definition

	16 AeACom
	17 GUI Formatting Codes
	18 Script Editor Features
	18.1 Search and Replace
	18.2 Autocomplete and Shorthands

