

Reference Manual

Document title

WMPro Reference Manual
Document Identity

4655-002-007
Date

2015-10-22

Valid for

IMSE WebMaster Pro R4.0
Firmare version

2.42
Webpages version

3.19

WebMaster Pro WMPro Reference Manual

Abelko Innovation 2

All information in this reference manual is believed to be correct and the manual is released as an aid

to all WMPro users, free of charge. Abelko cannot guarantee that there are no mistakes or faults in this

documentation, and cannot be held responsible for any consequences that result from use or misuse of

the enclosed information.

All information in this document can be changed without notice. Some information is likely to change

in future releases of the firmware. Make sure you have the latest version of this document, and that it

is valid for your version of WMPro.

Copyright Abelko Innovation. All rights reserved.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 3

 .. 1

1. INTRODUCTION .. 7

2. CHANNELS .. 8

2.1. INTRODUCTION .. 8
2.2. DEFINITION ... 8
2.3. CONNECTION ... 10

2.3.1. Update Order .. 10
2.3.2. System inputs .. 11
2.3.3. Unconnected channels .. 12

2.4. SCALING .. 12
2.5. MATHEMATICAL FUNCTIONS ... 13

3. PARAMETERS .. 23

3.1. INDRODUCTION ... 23
3.2. DEFINITION ... 23
3.3. A WARNING ON DECIMALS ... 23

4. ALARMS ... 24

4.1. INTRODUCTION .. 24
4.2. DEFINITION ... 24
4.3. ALARM CONDITIONS .. 24
4.4. ALARM ACTION CHANNEL .. 25

5. TIME CONTROL AND WEEKDAY CATALOGUE .. 26

5.1. INTRODUCTION .. 26
5.2. DEFINITION ... 26
5.3. TIME CONTROL TYPES ... 26

5.3.1. Time .. 26
5.3.2. Calendar ... 27
5.3.3. Week ... 27

5.4. WEEKDAY CATALOGUE .. 27
5.5. SCRIPT NOTES .. 27

6. CURVES .. 28

6.1. INTRODUCTION .. 28
6.2. DEFINITION ... 28

7. DATABASES .. 29

7.1. INTRODUCTION .. 29
7.2. SETTINGS / ADVANCED / DATABASES.. 29
7.3. DEFINITION ... 30
7.4. DATABASE EMAIL DEFINITIONS .. 30

8. SUMMARY PAGES... 32

8.1. INTRODUCTION .. 32
8.2. BASIC SETTINGS .. 32
8.3. SUMMARY PAGE ROWS .. 32

8.3.1. Text, Header and Line .. 33
8.3.2. Image .. 33
8.3.3. Link ... 34
8.3.4. Channel value, Parameter value and Alarm status .. 34
8.3.5. Database ... 34
8.3.6. Curve .. 35
8.3.7. Edit parameter .. 36
8.3.8. Edit channel .. 36

8.4. LIMITATIONS OF SUMMARY PAGES .. 37

9. EXTERNAL DEVICES ... 38

WebMaster Pro WMPro Reference Manual

Abelko Innovation 4

9.1. INTRODUCTION .. 38
9.2. EXTERNAL DEVICE DEFINITION ... 38
9.3. DEVICE TYPE DEFINITION PARAMETERS .. 39
9.4. CONNECTION DEFINITION .. 39
9.5. DEVICE EMAIL DEFINITION .. 40
9.6. WMSHARE PARAMETERS .. 40

10. THE SCRIPT LANGUAGE .. 41

10.1. INTRODUCTION .. 42
10.2. LANGUAGE BASICS .. 42
10.3. HOW TO READ A SYNTAX GRAPH ... 43

11. USER SCRIPTS .. 44

11.1. ROUTINE DECLARATIONS .. 44
11.1.1. The Alias section ... 45
11.1.2. Variables ... 46

11.2. STATEMENTS LT ... 47
11.2.1. Channel and Variable assignment .. 47
11.2.2. IF-statements .. 48
11.2.3. Reset statements .. 49
11.2.4. Print statements .. 49
11.2.5. Call statements ... 49
11.2.6. Acknowledge ... 49
11.2.7. Disable and enable alarms ... 49
11.2.8. Set and Clear manual override ... 50
11.2.9. Comments ... 50

11.3. EXPRESSIONS... 52
11.3.1. Unary operators ... 52
11.3.2. Infix operators .. 53
11.3.3. Parenthesis and memory requirements ... 53
11.3.4. Reserved functions .. 54
11.3.5. New expressions in R3.1 ... 55
11.3.6. Curves ... 55
11.3.7. Examples and error handling ... 55

12. THE SCRIPT EDITOR ... 56

12.1. SYNTAX HIGHLIGHTING ... 56
12.2. INSERTING ALIASES ... 56
12.3. SAVING THE SCRIPT ... 57
12.4. THE SNIPPETS INTERFACE ... 59

12.4.1. Editing aliases .. 60
12.4.2. Saving and loading snippets ... 61
12.4.3. Moving and deleting snippets ... 61

13. GFBI TYPE DEFINITIONS ... 62

13.1. THE GENERAL FIELD BUS INTERFACE ... 62
13.2. THE DEVICE TYPE DEFINITION .. 62

13.2.1. Overview ... 62
13.2.2. Syntax ... 63

13.3. EXAMPLE... 66
13.4. SEMANTICS EXPLANATION .. 67

13.4.1. First row ... 67
13.4.2. PARAMETER, PUBLIC and PRIVATE .. 67
13.4.3. BAUDRATE and CHECKSUM ... 67

13.5. TELEGRAM DEFINITIONS .. 68
13.5.1. Question compiler definition .. 68
13.5.2. Answer parser definition ... 68
13.5.3. Floating point support in R4.0 .. 69
13.5.4. TIMEOUT ... 69

13.6. A MODBUS EXAMPLE ... 69

WebMaster Pro WMPro Reference Manual

Abelko Innovation 5

13.6.1. WM22-DIN power analyser from Carlo Gavazzi ... 69
13.6.2. Reading data and scaling information .. 71
13.6.3. A general MODBUS DEVICETYPE definition ... 74

13.7. GENERIC CRC ... 75
13.7.1. Explanation ... 75
13.7.2. Examples ... 75
13.7.3. CRC16 / CITT ... 75
13.7.4. CRC16 / ARC .. 75
13.7.5. XMODEM / Kermit ... 75
13.7.6. ZMODEM ... 75

14. GROUP SCRIPTS .. 76

14.1. INTRODUCTION .. 76
14.2. SYNTAX ... 76
14.3. EXAMPLE... 77
14.4. SELECTION EXPLANATION ... 77
14.5. ITERATOR EXPLANATION ... 78
14.6. GROUP STATISTICS .. 81

15. AEACOM SCRIPTS .. 83

15.1. INTRODUCTION .. 83
15.2. AEACOM CONFIGURATION ... 83
15.3. AEACOM TYPE DEFINITIONS .. 84
15.4. AEACOM GROUPS ... 85

16. WMSHARE SCRIPTS ... 86

16.1. INTRODUCTION .. 86
16.2. WMSHARE TYPE DEFINITIONS ... 86

17. DEVICE INITIALISATION ... 87

17.1. SYNTAX ... 87
17.2. TELEGRAM UPDATE INTERVAL CODES ... 88
17.3. EXAMPLES ... 88

18. APPLICATION SCRIPTS .. 89

18.1. INTRODUCTION .. 89
18.2. APPLICATION SCRIPT STRUCTURE .. 89
18.3. DEFINITIONS .. 90

18.3.1. Initiators ... 91
18.3.2. Parameter definitions ... 91
18.3.3. Constant definitions .. 92
18.3.4. Channel definitions ... 93
18.3.5. Curve definitions ... 96
18.3.6. Alarm definitions .. 97
18.3.7. Database defines ... 98
18.3.8. Log entry definitions ... 99
18.3.9. Flags ... 100

18.4. PROCEDURES AND STATEMENTS ... 101
18.4.1. Procedures .. 101
18.4.2. Assignments .. 101
18.4.3. The PUTPAR statement .. 101
18.4.4. Call statements ... 102
18.4.5. Update .. 102

19. THE PARAMETER BANK... 103

19.1. INTRODUCTION .. 103
19.2. PARAMETER NUMBERS .. 103
19.3. GETPAR.SSI ... 104
19.4. PUTPAR.CGI ... 104
19.5. GETPART.SSI .. 105

WebMaster Pro WMPro Reference Manual

Abelko Innovation 6

19.6. GETPARX.SSI ... 105
19.6.1. Multiple parameter retrieval .. 105
19.6.2. Flag selection filter ... 105

19.7. FLAGS.. 106
19.7.1. z=7 The Used flag ... 107
19.7.2. z=8 The Edited flag .. 107
19.7.3. z=16 The Script flag ... 107
19.7.4. The Show flags .. 107
19.7.5. z=9 The Backup flag ... 107
19.7.6. The other flags .. 107

19.8. BACKUP.PAR AND PUTPAR.PAR .. 108
19.8.1. The parameter bank edit interface .. 108
19.8.2. The Appinit.ini file .. 109

19.9. NAMING RESTRICTIONS ... 109
19.10. SYSTEM PARAMETERS ... 110
19.11. COMMAND – PARAMETER NO 5 .. 112

WebMaster Pro WMPro Reference Manual

Abelko Innovation 7

1. Introduction
Welcome to the WMPro reference manual. This document tries to compile all the

information about the WMPro that did not fit into the user manual. Where the users

manual had the ambition to be a pedagogic and readable piece of literature, the

reference manuals main goal is make information about obscure details available in a

way where it can be found.

The reference manual has three main sections. The first, chapter 2 to 9, concerns details

about all the functionalities of the WMPro. Under Settings / Advanced are several

menus that are not fully explained in the user manual. Even for functionalities that are

explained in the user manual there still may be details that are not addressed. For all

functionalities where it is applicable a definition table with parameter numbers is

included. The parameter number is the key to access information when using OPC or

writing new web pages or specialized software that communicates over http.

The second main section, chapter 10 to 18 deals with the script language. This is the

base for all customized functionality in WMPro. How to write scripts is not explained

in the user manual, but the reference manual hold all details. The script section is

written to be more readable than the first section, but do not expect a textbook on

programming. The reference manual will explain all possibilities, but expects the user

to find out what to use it for. There are some examples, but look in the collection of

application examples on the Abelko home page for more.

Chapter 19 is the third main section and deals with the parameter bank and how to

access information in the WMPro. There are tables of parameter numbers in the first

section. The third section will teach you what to do with them.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 8

2. Channels

2.1. Introduction

The conceptual unit of a channel is fundamental to the operation of a WMPro. A

channel holds and channels the flow of information in a WMPro. It can be connected to

an input or an output, or to another channel, and in can perform mathematical

operations on the data.

The channel value is a floating point value, but the channel is also associated with a

name, a unit, mathematical parameters and options and a set of flags. Other systems in

the WMPro get information from and put information to channels. No other system

works directly on hardware inputs and outputs.

A list of all 200 channels in a WMPro is accessible under Settings / Advanced /

Channels. This list is colour coded to make it easier to identify how the channels are

used. Unused channels are white. Channels used by scripts are blue. Channels that have

been edited by a user, but are not used by a script, are yellow. A red colour indicates

that the channel is used by a script, but has not been edited. When edited and given for

example a name it will change to blue.

2.2. Definition

Below is a table describing the complete set of information that defines a channel, and

the corresponding parameter numbers.

Name Type Comment Parameter

Name String[32] A name p501

Unit String[8] A unit name p502

Scale float Scale factor p503

Offset float Offset value p504

Connection type byte Type of connection p505

Connection number byte Connection instance number p506

Value float The channel value p507

Decimals byte Number of decimals to display p508

MathFunc byte Type of mathematical function p509

MathPar 1 float Mathematical function parameter p510

MathPar2 float Mathematical function parameter p511

MathPar 3 double Mathematical function parameter p512

Flags word Flag array p514

Name and Unit are strings of maximally 32 and 8 characters respectively. A channel

value is normally displayed as name value unit, like “Outdoor temperature 16.2 °C”.

The value of the parameter Decimals decides how many decimals to display when

printing the value. In the example this was set to 1, but may be 0 to 5.

The other parameters of a channel definition are explained in the following sections.

The Flags parameter is explained in the chapter Flags, as it is common to many systems

in WMPro.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 9

How to use the channel numbers is explained in the section about the parameter bank.

The values of a channel definition can be edited when clicking a channel in the list. The

form renames and disables MathPar 1 to 3 as appropriate from the selection of

MathFunc. In the example above they have been renamed a, b, and c.

The flags cannot be edited from the form as they are automatically handled, except for

the Backup flag. Normally a channel starts with the value zero after boot. Setting the

Backup flag to Yes means that the channel will use the last stored value instead. The

channel value is stored when the channel is edited by a user, and in a backup process

once every hour.

This flag should normally be set to No. As channels are used in normal cases the initial

value will be overwritten before it is used, and setting the flag to Yes makes no

difference.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 10

2.3. Connection

A channel can be connected to an input or an output, or it can be unconnected. The

connection type number decides the type of connection. The connection number

decides which IO of the type the channel is connected to.

Val Type In/Out Comment and connection numbers

0 None - Not connected

1 DIN IN Digital inputs, 1to8 = DIN1 to DIN8. 9 to 16 correspond

to T1 to T8 used as digital inputs.

2 DIN_F IN Digital frequency inputs. 1 to 4 = DIN1 to DIN4.

3 AIN_U IN Analogue voltage inputs. 1 to 4 = AIN1 to AIN4.

4 AIN_I IN Analogue current inputs. 1 to 4 = AIN5 to AIN8.

5 AIN_R IN Resistance measuring inputs. 1 to 8 = T1 to T8 as

temperature inputs.

6 LED OUT LED outputs. 1 to 32 are LEDs on the front panel card

named LD1 to LD32. On standard hardware 1 to 8 are

DIGITAL IN, 9 to 16 DIGITAL OUT, 31 is ALARM and

32 is system.

7 DOUT OUT Digital outputs, 1 to 8 = DOUT 1 to DOUT8.

8 DOUT_F OUT Frequency outputs, none on WMPro.

9 AOUT_U OUT Analogue voltage outputs. 1 to 8 = AOUT1 to AOUT8.

10 AOUT_I OUT Analogue current outputs. None on WMPro.

11 SYS IN System variables. Explained separately.

12 CHANNEL IN Input from another channel. Connection number equals

channel number.

13 COUNTER IN Counter inputs. 1 to 4 corresponds to counting pulses on

DIN1 to DIN4.

When a channel is connected to an input it will each second be updated with the value

from the input, with scaling applied. If it is connected to an output the channel value

will be scaled and then put to the output.

Note on LEDs: The LEDs on a WMPro are automatically managed. Connecting a

channel to a LED will however override the automatic function. The value 0 turns the

LED of, 1 on and 2 makes it blink. LED 32 is connected to channel 200 by the

application script. The hardware is prepared for more LEDs than normally mounted,

and there are alternative positions for some LEDs.

Note on Counters: The COUNTER input type does not store counter value. When a

channel is connected it will store the counter value. Every second the channel value

will be increased by the number of counts registered in the past second.

2.3.1. Update Order

In some cases the order in which updates occur can be important. All channel updates

starts with the lowest number channel first, i.e. from 1 and upwards. This is important

for instance when a channel has another channel as input. If the connected channel has

a higher number the value will be one second old.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 11

When scripts and alarms and other parts of the system are involved it may be important

to know the update order for all systems. The updates are synced with the IO updates,

but executed in another thread. When the signal comes that the updates are to start, the

following things are performed:

1. Input channels are updated

2. The application script is executed

3. The user scripts are executed

4. Output channels are updated

5. Alarms are updated

6. Calendars are updated

7. Databases are updated

If signal latency is important it may be good to know in which order the IOs are

updated. The analogue inputs are read one at a time throughout the interval of a second.

This is the order in which the IOs are updated, starting at the one second periodic

interrupt:

1. AIN1 and T1 are measured, Frequency measurement is updated

2. AIN2 and T2 are measured, DIN1 to DIN8 inputs are measured

3. AIN3 and T3 are measured

4. AIN4 and T4 are measured, SYSTEM UPDATE STARTS

5. AIN5 and T5 are measured, DOUT1 to DOUT8 are updated

6. AIN6 and T6 are measured, AOUT1 to AOUT8 are updated

7. AIN7 and T7 are measured

8. AIN8 and T8 are measured

There is a delay of approximately 120 ms between each point in this list. Normally the

system update will be completed before point 5, where the outputs are updated, but

there is no guarantee.

2.3.2. System inputs

The system inputs are a kind of virtual inputs that can connect channels with system

status information. The indexes have the following meanings.

Number Value

1 Network status.

Used by the WMPro appscript to blink the system led.

2 Modem supervision output. If modem supervision is used, this signals when

the modem should be on and of. Used by WMPro appscript to connect to

DOUT8 when modem supervision is active.

3 Prognosis active. Used by ERIPX2 appscript.

4 Prognosis TOUT outdoor temperature

5 Prognosis T0. Used by ERIPX2 appscript.

6 Prognosis Te. Used by ERIPX2 appscript.

7 Prognosis Te just. Used by ERIPX2 appscript.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 12

8 Prognosis difference. Used by ERIPX2 appscript.

9 Prognosis status. Used by ERIPX2 appscript.

11 Prognosis Forecast received

11 Prognosis Forecast error count

21 Proxy online

22 Proxy error count 1

23 Proxy error count 2

31 Portal updated

32 Portal error count 1

33 Portal error count 2

101 System statistic: measure task execute ticks

102 System statistic: motor task execute ticks

103 System statistic: parbank task execute ticks

104 System statistic: parbank task period

105 System statistic: rtxc not idle ticks

106 System statistic: rtxc normalised idle count / s

107 System statistic: allocated heap size

108 System statistic: allocated heap blocks

2.3.3. Unconnected channels

Unconnected and output channels will not be updated with new values from an input.

Values can be assigned by scripts (including graphical programmes or controllers), or

by an alarm as an action channel. If not, the value can be set manually in the user

interface. The channel value is however normally not saved, and will be reset to zero

when the WMPro boots.

It is possible to set a flag to preserve channel values. Find more information in the flags

section in chapter 19.

2.4. Scaling

When the channel is connected to an input the value from the input will be scaled using

the scale and offset parameter of the channel.

Channel Value = Scale * Input Value + Offset

Outputs are scaled according to:

Output = (Channel Value + Offset) / Scale

When there is no connection, scale and offset has no effect. When a channel is assigned

a value, in a script or from an alarm, this affects the value parameter directly with no

scaling.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 13

2.5. Mathematical functions

A mathematical function is executed after an input or an output has been updated. For

channels with no connection the mathematical function is updated at the same time as

channels with inputs.

The mathematical function makes calculations and replaces the channel value with a

new value. The three parameter called MathPar 1 to 3 are used both as input parameters

to some mathematical functions, and as state information holders for mathematical

functions with a internal states. (Note, MathFuncs for channels are not functions in the

strictly mathematical sense of the word.)

When a mathematical function stores states, these states must sometimes be cleared.

This can be done from script, but the most common usage is together with databases.

The database sets a flag that the triggers the reset. Some functions come in two

variants, one to be used with databases and one to be used with manual or periodic

resets.

States are stored before controlled reboots and once every hour. If a power failure

occurs up to one hour of information may be lost.

Below is a list of all available functions, with parameter definitions and C code

semantics.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 14

AR-filter

Auto regressive filter function. The filter factor is between 0 and 1, where 0 means no

filtering and 1 means complete disconnection.

MathPar1 Filter factor, a value between 0 and 1.

MathPar2 -

MathPar3 -

code

float ffact = Chn.MathPar1[i];

if (ffact > 1) ffact = 1;

Chn.MathPar1[i]) * Chn.Value[i];

Chn.Value[i] = ffact * Chn.MathPar2[i] + (1 - ffact) * Chn.Value[i];

Chn.MathPar2[i] = Chn.Value[i];

Count over

Counts every second the channel value is higher than the limit.

MathPar1 Limit

MathPar2 -

MathPar3 -

code

if (Chn.Value[i] > Chn.MathPar1[i]) Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.Value[i] = Chn.MathPar3[i];

Count under

Counts every second the channel value is lower than the limit.

MathPar1 Limit

MathPar2 -

MathPar3 -

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
AR Filter step respons for factor 0.5, 0.7, 0.8, 0.9, 0.95, and 0.99

C
h
a
n
n
e
l
v
a
lu

e

Time [s]

WebMaster Pro WMPro Reference Manual

Abelko Innovation 15

code

if (Chn.Value[i] < Chn.MathPar1[i]) Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.Value[i] = Chn.MathPar3[i];

Count pulse

Counts the number of times he channel value changes from under the limit to higher than the

limit. (This mathematichal function is not to be confused with the hardware supported counter

functions on DI1 to DI4.)

MathPar1 Limit

MathPar2 -

MathPar3 -

code

if ((Chn.Value[i] > Chn.MathPar1[i]) & (Chn.MathPar2[i] == 0))

{

 Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

 Chn.MathPar2[i] = 1;

}

else if (Chn.Value[i] < Chn.MathPar1[i])

{

 Chn.MathPar2[i] = 0;

}

Chn.Value[i] = Chn.MathPar3[i];

Count over DB

Same as Count over, but is reset to zero every time the value has been put into a database.

MathPar1 Limit

MathPar2 -

MathPar3 -

code

if (Chn.Value[i] > Chn.MathPar1[i]) Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.Value[i] = Chn.MathPar3[i];

if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

Count under DB

Same as Count under, but is reset to zero every time the value has been put into a database.

MathPar1 Limit

MathPar2 -

MathPar3 -

code

if (Chn.Value[i] < Chn.MathPar1[i]) Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.Value[i] = Chn.MathPar3[i];

if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

WebMaster Pro WMPro Reference Manual

Abelko Innovation 16

Count pulse DB

Same as Count pulse, but is reset to zero every time the value has been put into a database.

MathPar1 Limit

MathPar2 -

MathPar3 -

code

if ((Chn.Value[i] > Chn.MathPar1[i]) & (Chn.MathPar2[i] == 0))

{

 Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

 Chn.MathPar2[i] = 1;

}

else if (Chn.Value[i] < Chn.MathPar1[i])

{

 Chn.MathPar2[i] = 0;

}

Chn.Value[i] = Chn.MathPar3[i];

if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

Mean

Mean calculates the mean value over a period of time. The mean value is updated every

second, each time representing more samples. The most common use is with the Interval

parameter set to zero. The mean will then be reset when saved in database, or on script

command.

MathPar1 -

MathPar2 Interval, time in second between resets. Zero value means reset

by database.

MathPar3 -

code

if (Chn.MathPar3[i] <= 0) Chn.MathPar1[i] = 0; //reset

Chn.MathPar1[i] = Chn.MathPar1[i] + Chn.Value[i];

Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

if (Chn.MathPar3[i] <= 0) Chn.MathPar3[i] = 1; //To avoid accidental divide by zero

if (Chn.MathPar2[i] > 0) {

 Chn.Value[i] = Chn.MathPar1[i] / Chn.MathPar3[i];

 if (Chn.MathPar3[i] >= Chn.MathPar2[i]) {

 Chn.MathPar3[i] = 0;

 Chn.MathPar1[i] = 0;

 }

 }

else {

 Chn.Value[i] = Chn.MathPar1[i] / Chn.MathPar3[i];

 if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

}

WebMaster Pro WMPro Reference Manual

Abelko Innovation 17

Variance

The variance function calculates the variance of the input signal over a period of time. The

variance value is updated every second, each time representing more samples. The variance

will be reset when saved in database, or on script command.

Variance is a measure of how much the signal has varied. The accuracy of the calculation is

limited by the resolution of floating point values and operations.

MathPar1 (mean)

MathPar2 (S)

MathPar3 (count)

code

float delta = Chn.Value[i] - Chn.MathPar1[i];

Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.MathPar1[i] = Chn.MathPar1[i] + delta / Chn.MathPar3[i];

Chn.MathPar2[i] = Chn.MathPar2[i] + delta * (Chn.Value[i] - Chn.MathPar1[i]);

if (Chn.MathPar3[i] > 1)

{

 Chn.Value[i] = Chn.MathPar2[i] / (Chn.MathPar3[i] - 1);

}

else

{

 Chn.Value[i] = 0;

}

Standard deviation

The standard deviation function calculates the standard deviation of the input signal over a

period of time. The standard deviation will be reset when saved in database, or on script

command.

Standard deviation is the square root of variance, a measure of how much a signal varies. One

use can be to measure how good a controller is working. A controller with the task to keep

something constant should ideally have a standard deviation of zero.

The accuracy of the calculation is limited by the resolution of floating point values and

operations.

MathPar1 (mean)

MathPar2 (S)

MathPar3 (count)

WebMaster Pro WMPro Reference Manual

Abelko Innovation 18

code

float delta = Chn.Value[i] - Chn.MathPar1[i];

Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

Chn.MathPar1[i] = Chn.MathPar1[i] + delta / Chn.MathPar3[i];

Chn.MathPar2[i] = Chn.MathPar2[i] + delta * (Chn.Value[i] - Chn.MathPar1[i]);

if (Chn.MathPar3[i] > 1)

{

 Chn.Value[i] = sqrt(Chn.MathPar2[i] / (Chn.MathPar3[i] - 1));

}

else

{

 Chn.Value[i] = 0;

}

Sum

Sum adds the channel value multiplied with the factor parameter to the total sum. If the

absolute value of the total sum is higher than the limit parameter, the sum value is set to the

limit. A limit of zero means no limit.

The sum function is a time discrete integrator. It can, amongst other things, be used as

integrator in a controller, using the Limit parameter for antiwindup.

MathPar1 -

MathPar2 Factor

MathPar3 Limit, zero means unused.

code

Chn.MathPar1[i] = Chn.MathPar1[i] + Chn.MathPar2[i] * Chn.Value[i];

if ((Chn.MathPar3[i] > 0) & (abs(Chn.MathPar1[i]) > Chn.MathPar3[i])) {

 if (Chn.MathPar1[i] > 0) Chn.MathPar1[i] = Chn.MathPar3[i];

 else Chn.MathPar1[i] = -Chn.MathPar3[i];

}

Chn.Value[i] = Chn.MathPar1[i];

Sum DB

Same function as Sum, but is reset to zero when stored in database. Can for instance be used

to store cumulative errors in database, or on time for a digital signal.

MathPar1 -

MathPar2 Factor

MathPar3 Limit, zero means unused.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 19

code

Chn.MathPar1[i] = Chn.MathPar1[i] + Chn.MathPar2[i] * Chn.Value[i];

if ((Chn.MathPar3[i] > 0) & (abs(Chn.MathPar1[i]) > Chn.MathPar3[i])) {

 if (Chn.MathPar1[i] > 0) Chn.MathPar1[i] = Chn.MathPar3[i];

 else Chn.MathPar1[i] = -Chn.MathPar3[i];

}

Chn.Value[i] = Chn.MathPar1[i];

if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

Diff

Diff, as in differentiator or difference, calculates the difference between the current value and

the last value. The difference is multiplied with the factor parameter.

MathPar1 -

MathPar2 Factor

MathPar3 -

code

Chn.MathPar3[i] = Chn.Value[i];

Chn.Value[i] = (Chn.MathPar3[i] - Chn.MathPar1[i]) * Chn.MathPar2[i];

Chn.MathPar1[i] = Chn.MathPar3[i];

Min

Min looks and holds the lowest value found in a time period. The value is updated every

second. If the interval parameter is zero, it is reset every time it is stored in a database.

Otherwise the value is reset every Interval seconds.

MathPar1 -

MathPar2 Interval

MathPar3 -

code

if (Chn.MathPar3[i] == 0) Chn.MathPar1[i] = Chn.Value[i]; //reset

if (Chn.Value[i] < Chn.MathPar1[i])

Chn.MathPar1[i] = Chn.Value[i];

Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

if (Chn.MathPar2[i] > 0) {

 if (Chn.MathPar3[i] >= Chn.MathPar2[i]) {

 Chn.MathPar1[i] = Chn.Value[i];

 Chn.MathPar3[i] = 0;

 }

}

else {

 if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

}

Chn.Value[i] = Chn.MathPar1[i];

WebMaster Pro WMPro Reference Manual

Abelko Innovation 20

Max

Max looks and holds the higest value found in a time period. The value is updated every

second. If the interval parameter is zero, it is reset every time it is stored in a database.

Otherwise the value is reset every Interval seconds.

MathPar1 -

MathPar2 Interval

MathPar3 -

code

if (Chn.MathPar3[i] == 0) Chn.MathPar1[i] = Chn.Value[i]; //reset

if (Chn.Value[i] > Chn.MathPar1[i])

Chn.MathPar1[i] = Chn.Value[i];

Chn.MathPar3[i] = Chn.MathPar3[i] + 1;

if (Chn.MathPar2[i] > 0) {

 if (Chn.MathPar3[i] >= Chn.MathPar2[i]) {

 Chn.MathPar1[i] = Chn.Value[i];

 Chn.MathPar3[i] = 0;

 }

}

else {

 if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

}

Chn.Value[i] = Chn.MathPar1[i];

RTD

The RTD mathematical function can be used to calculate a temperature from a measured

resistance for resistance dependent temperature detector. Three parameters are used to define

the sensor. R0 is the resistance at temperature T0. Alpha is a material dependent constant. The

temperature is calculated according to T = (R-R0+R0*Alpha*T0)/(R0*Alpha).

The formula is a first order approximation, an can give significant errors far from T0 for some

types of sensors. It is for example not very good for Pt1000 sensors.

MathPar1 R0

MathPar2 Alpha

MathPar3 T0

code

float R0Alpha;

R0Alpha = Chn.MathPar1[i] * Chn.MathPar2[i];

if (R0Alpha != 0)

{

 Chn.Value[i] = (Chn.Value[i] - Chn.MathPar1[i]

 + R0Alpha * Chn.MathPar3[i]) / (R0Alpha);

}

WebMaster Pro WMPro Reference Manual

Abelko Innovation 21

Thermistor

The thermistor mathematical function can be used to calculate a temperature from a measured

resistance for thermistor sensor. Three parameters are used to define the sensor. R0 is the

resistance at temperature T0. Beta is a thermistor type dependent parameter. The temperature

is calculated according to T = Beta * T0/(Beta + ln(R/R0) * T0).

MathPar1 R0

MathPar2 T0

MathPar3 Beta

code

if (Chn.MathPar1[i] != 0)

 Denom = Chn.MathPar3[i] + Chn.MathPar2[i] * log(Chn.Value[i] / Chn.MathPar1[i]);

 Else Denom = 0;

if (Denom != 0)

 Chn.Value[i] = (Chn.MathPar3[i] * Chn.MathPar2[i]) / (Denom);

Ploynomial

The polynomial mathematical function calculates a value using a second order polynomial

defined by parameters a, b and c. The value is calculated according to a + bx + cx
2
, where x is

the input value. This can be used for conversions of measured values from sensors.

MathPar1 a

MathPar2 b

MathPar3 c

code

float x = Chn.Value[i];

Chn.Value[i] = Chn.MathPar1[i] + Chn.MathPar2[i]*x + Chn.MathPar3[i]*x*x;

Hourmeter

The hourmeter function counts the time, in hours, that the monitored channel is higher than a

reference value. The main use of this function is for measuring running hours on digital inputs

or outputs. Many other uses are possible.

MathPar1 Limit

MathPar2 -

MathPar3 Counter value

code

if (Chn.Value[i] > Chn.MathPar1[i])

 Chn.MathPar3[i] = Chn.MathPar3[i] + 0.0002777777777777777777777777777;

Chn.Value[i] = Chn.MathPar3[i];

WebMaster Pro WMPro Reference Manual

Abelko Innovation 22

Change_DB

The Change_DB mathematical function is always used together with a database. The channel

value is the difference between the value at the last database save and the current value. If

MathPar3 is zero the mathfunc is updated every second, else it is updated only when the

database is updated.

The intended use for this function is to monitor the daily changes of a counter or an hour

meter. Connecting a channel with Change_DB to an energy counting channel, and putting it

the day database, will enable you to record how much energy used each day.

MathPar1 Last channel value

MathPar2 Last change

MathPar3 Hold last change

code

if ((Chn.Flags[i] & PB_CHNFLAGS_CLRDBS) > 0) CHANNEL_ResetChannelMath(i);

if (Chn.MathPar3[i] == 0) //running

{

 Chn.Value[i] = Chn.Value[i] - Chn.MathPar1[i];

}

else

{

 Chn.Value[i] = Chn.MathPar2[i];

}

Manual Override

Manual Override adds the channel to the Manual Override menu, allowing a user to override

any value set by a script or other source. When manual override is activated the channel will

be assigned values just as normal, but when read, the manual override value (MathPar1) will

be returned instead of the true channel value.

There is a time limit for the manual override. When activated a timer starts and when it times

out manual override will be automatically disabled. When disabled automatically or by user

the true channel value will be returned again as in normal operation.

Manual override is always disabled after reset.

Activation and deactivation of manual override is done through the Show3 flag.

MathPar1 Manual Value

MathPar2 Time Limit

MathPar3 Time Counter

WebMaster Pro WMPro Reference Manual

Abelko Innovation 23

3. Parameters

3.1. Indroduction

A parameter is in some senses similar to a channel, but unlike a channel a parameter

holds static data. The value of a parameter can only be changed by a user with operator

or config rights. It is used to parameterize a controller or other script.

A list of all 100 parameters in a WMPro is accessible under Settings / Advanced /

Parameters. This list is colour coded, just as the channels list is, to make it easier to

identify how the parameters are used. Unused parameters are white. Parameters used by

scripts are blue. Parameters that have been edited by a user, but are not used by a script,

are yellow. A red colour indicates that the parameter is used by a script, but has not

been edited. When edited and given for example a name it will change to blue.

3.2. Definition

Below is a table describing the complete set of information that defines a channel, and

the corresponding parameter numbers.

Name Type Comment Parameter

Name String[32] A name p900

Unit String[8] A unit name p901

Value float The channel value p902

Decimals byte Number of decimals to display p903

Flags word Flag array p905

Name and Unit are strings of maximally 32 and 8 characters respectively. A parameter

value is normally displayed as name value unit, like “Setpoint 16.2 °C”. The value of

the parameter Decimals decides how many decimals to display when printing the value.

In the example this was set to 1, but may be 0 to 5.

The values of a parameter definition can be edited in the list of parameters under

Settings / Advanced / Parameters in the web interface. The flags cannot be edited from

the form as they are automatically handled. Press save when done editing.

3.3. A Warning on Decimals

The Decimals setting only tells how many decimals will be shown, it does not round

the actual value. Setting a parameter to 3.14 and the number of decimals to 0 will give

the parameter the value 3.14, but when displayed it will be shown as 3.

This may be somewhat confusing. When the parameter is edited the next time the value

will be shown as 3. If the user then press OK this will be saved, and even though the

user believes nothing has been change, the value will actually be changed from 3.14 to

3.

A strong recommendation therefore is to always show all used decimals.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 24

4. Alarms

4.1. Introduction

Alarms are an important functionality in WMPro. Each alarm monitors one (and only

one) channel. When the set alarm criterion is met the alarm is triggered.

As alarms are well described in the user manual the reference manual will only address

some details that are not fully described in user manual.

4.2. Definition

Name Type Comment Parameter

Name String[20] A name p1100

Message String[128] Alarm message p1101

Reset byte Alarm reset p1102

TrigChnNr byte The number of the monitored

channel

p1103

TrigCond byte Alarm Condition type p1104

TrigLimit1 float Alarm trig limit p1105

TrigLimit2 float Alarm trig limit p1106

TrigHysteresis float Alarm hysteresis p1107

TrigFilterOn Int On filter p1108

TrigFilterOff Int Off filter p1109

TrigFilterCounter Int Filter counter p1110

Action Byte bitmask Action type p1111

ActionChnNr byte Action channel number p1112

Status byte Active or not p1113

ExpectAck byte Waiting for ack, or not p1114

Time Long int Timestamp p1115

Flags word Flag array p1116

Name String[20] A name p1100

4.3. Alarm conditions

The values of TrigCond have the following meaning:

Value Name Condition

0 OVER Channel > TrigLim1

1 UNDER Channel < TrigLim1

2 BIGGER ABS(Channel) > TrigLim1

(ABS stands for absolute value)

3 SMALLER ABS(Channel) < TrigLim1

WebMaster Pro WMPro Reference Manual

Abelko Innovation 25

(ABS stands for absolute value)

4 BETWEEN (Channel > TrigLim1) AND (Channel < TrigLim2)

5 OUTSIDE (Channel < TrigLim1) OR (Channel > TrigLim2)

6 EQUALS Channel = TrigLim1

TrigFilterOn modifies the condition in that the condition must be true for the number of

seconds TrigFilterOn stores before the alarm is triggered. TrigFilterOff is the same

modifier for alarm deactivation. TrigFilterCounter is used internally to count for how

long time a condition has been met.

TrigHysteresis is another modifier that changes the TrigLimits for the deactivation of

an alarm. The hysteresis value is either added or subtracted from the limit, depending

on which limit and the condition type. It is used to prevent an alarm from being

activated and deactivated repeatedly when a channel value is oscillating close to a trig

limit. The trig limit is not affected by Hysteresis when the condition is EQUAL.

4.4. Alarm Action Channel

When a channel is selected as action channel for one or many alarms, the channel value

will be assigned the number of active alarms with the channel set as action channel.

The action channel update is performed in two steps. In the first step all alarms are

scanned, and all action channels are set to zero. In the second stage, after all alarms has

been updated, the alarm list is scanned again. For all active alarms with an assigned

action channel, that channel is increased by one.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 26

5. Time Control and Weekday Catalogue

5.1. Introduction

Time control is used to program the WMPro to do certain things at certain points in

time. The time control itself will evaluate to either false or true, a value that can be used

in scripts (including controllers and graphical programs).

As the time control functions are well described in the user manual the reference

manual will only address some specific information not enclosed in the user manual.

5.2. Definition

A Time Controll can be of three different types, who use the parameters in different

ways. Each time control also holds an array of time point definitions. The number of

time points is limited to ten.

Name Type Comment Parameter

Name String[20] A name p1700

Type byte 0 = Time, 1 = Date, 2 = Week p1701

Value byte Current state p1702

ItemActive Byte array Time point used p1717

TimeStart Long int

array

 p1704

TimeDuration Long int

array

 p1705

TimeIntervall Long int p1703

DateStart Long int

array

 p1706

DateStop Long int

array

 p1707

WeekStart Long int

array

 p1708

WeekStop Long Int

array

 p1709

WeekDayMask Byte bitmask

array

 p1710

Flags word Flag array p1715

5.3. Time Control types

5.3.1. Time

The Time controll type Time is used for strictly periodic time controlls. TimeIntervall

holds the length of the interval, in seconds. For each time point item there is one

TimeStart and one TimeDuration. TimeStart holds information on how long into the

period the Time Control will change state to true. TimeDuration holds for how long

time thereafter it will remain true.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 27

The periodicity is based on the real time clock. This means that if the TimeIntervall is

set to one hour, the interval will start when the real time clock passes an hour. This also

means that the Time Control might change state when the clock is set.

5.3.2. Calendar

The calendar time control type is used for nonperiodic time control. For each time point

DateStart holds an absolute time (stored as seconds since 2000-01-01 00:00:00) when

the control will become true, and a DateStop for the time when it will stop being true.

5.3.3. Week

The Week type is periodic for every week. Each time point consists of a WeekStart and

WeekStop, which are timpoints in a day. The WeekDayMask masks out for which

weekdays the timepoint definition is to be active. Bit 7 of the bitmask activates the

Weekday catalogue. This enables the week schedule to take public holidays and other

irregularities into consideration.

5.4. Weekday Catalogue

The weekday catalogue is stored in parameter 1712. The parameter holds up to 100

wekday replacements consisting of a date and day identifier pair, like 2004-01-01,7.

The number 7 means Sunday, and 1 would mean Monday.

The weekday catalogue can be edited as described in user manual chapter 9.3. The

default weekday catalogue is, unless something else is explicitly stated, defined for

Swedish holidays up to and including 2009.

Copying a weekday catalogue can be done by extracting information from the

backup.par file. Use the web interface to edit the weekday catalogue in one WMPro.

Retrieve the file backup.par from the device and open it in a text editor. Locate and

copy all files starting with “[RWE-]:p1712” to a new file.

To install the weekday catalogue in another WMPro upload the file to parameter bank.

This will only change the weekday catalogue in that device, without changing any other

settings.

The dates in the weekday catalogue may be entered in any order. The latest date may be

entered on the first row.

5.5. Script notes

When using script it is possible to get and use the state of a time control. That should be

no surprise. It is also possible to get information about how much time it is left until it

will change state. This widens the range of possible uses of time controls.

One possible use with the TIMELEFT function is to have the time control define when

a building is used and should be at daytime temperature. A script can use TIMELEFT

and start warming or cooling the building in advance, where the exact starting time can

be calculated from either outdoor temperature, room temperature or some combination

of information.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 28

6. Curves

6.1. Introduction

Curves are a form of interpolating look up tables (LUT). How they work and are used

is described in the users manual chapter eight. They are basically used to translate one

value (along the X axis) to another value (along the Y axis). Up to ten points can be

used to define the curve. These make up a piecewise linear function f(x).

Values higher than the largest point X-value, or lower than the lowest point X-value

will be translated to the Y value of the closest point. The value is not extrapolated from

two last or first points.

6.2. Definition

Name Type Comment Parameter

Name String[20] A name p1300

MaxPoint byte Number of defining points used p1301

LabelX String[20] X-Axis label p1302

LabelY String[20] Y-Axis label p1303

ValueX float array Array of point X-values p1305

ValueY float array Array of point Y-values p1306

MinValueX float X-axis min limit p1311

MaxValueX float X-axis max limit p1312

MinValueY float Y-axis min limit p1313

MaxValueY float Y-axis max limit p1314

Decimals byte Number of decimals shown for

definition points.

p1310

Flags word Flag array p1308

The point values ValueX and ValueY are addressed trough the z-values 1 to 10.

Min and Max X and Y values are inactivated if set to zero.

The decimals setting will not only affect how coordinates are displayed, but also which

coordinates can be selected graphically.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 29

7. Databases

7.1. Introduction

Databases and database emails are described in the user manual chapter 10 and how to

add things to databases is described in chapter 5. The user manual does not describe

how to use the database menu under advanced, which will be described in the next

section.

A database in WMPro is a functionality that can store selected channel values at regular

intervals in a circular non volatile buffer, and present the information stored in the

buffer in different ways. In WMPro there are three databases, and many web pages and

tools will not work unless the short time database, hour database and day database are

defined. The Goliath platform however allows up to six databases to be defined.

Each database can store up to 50 channels. The memory area however is limited. More

channels means shorter history. An internal buffer size limits the maximal history

shown to 8000 time points. The total available memory is distributed among the

databases. More databases thus mean less data in each. Each database also needs a

scrap buffer, so more databases actually means less total memory for guaranteed

database storage.

WMPro users are not recommended to play with the database definitions directly.

7.2. Settings / Advanced / Databases

The menu under Settings / Advanced / Databases lists all the channels in each of the

three databases. For the short time database it is possible to change the time base. The

default time base is one second. Storing information less often makes room for a longer

history. The interval for the Hour and Day databases are fixed and cannot be changed.

By selecting a database item from the list it is possible to change it. Any channel can be

selected, or none if the item is to be removed from the database. Every time the

database is changed, the database must be erased. The reason is that in order to save

memory only the actual values (and time point) is stored in the database. Not the

information about which value it is. If the database definition is changed it becomes

impossible to interpret the information in the database.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 30

7.3. Definition

Name Type Comment Parameter

Name String[20] A name p1200

Bank byte Memory bank used p1201

MinSector byte Start sector number p1202

MaxSector byte End sector number p1203

UpdateInterval Long int Update interval in seconds p1205

UpdateOffset Long int Interval offset in seconds p1206

SelChnNr Byte array The numbers of the channels to be

stored.

p1204

PostPeriodal byte 0 = pre periodal time stamps

1 = post periodal time stamps

p1212

Flags word Flag array p1210

Databases are stored in flash memory with a sector size of 64 kByte. The memory is

banked, but databases 1 to 6 always uses bank 0. Bank 0 has 16 sectors that can be

assigned to databases. MinSector must be lower than MaxSector. Nothing prevents the

assignment of overlapping sector ranges, but the result will be databases that do not

work, even though they may seem to work for a while.

UpdateInterval defines how often values should be saved. This is based on the real time

clock, so setting interval to 3600 seconds will cause the database to save data the first

second of every hour. UpdateOffest can be used to change when within the hour data

should be saved.

In WMPro offset is set to 3599 for the hour database, causing data to be saved the last

second of every hour. The equivalent is true for the day database.

In WMPro PostPeriodal is set to 1. This causes the database to save the time stamp in

the database to the time when the save is made. When PostPeriodal is set to zero the

time of the start of the interval is saved as time stamp.

7.4. Database Email Definitions

Name Type Comment Parameter

Name String[20] A name p1900

Type byte 0 = On Time

1 = On Alarm

p1901

DbsNr byte Database p1902

SendInterval Long int Send interval p1903

SendOffset Long int Send offset p1905

SendTrigAlarmNr Byte The alarm that can trigger a send p1906

SendLimit int Max number of rows in a mail p1907

WebMaster Pro WMPro Reference Manual

Abelko Innovation 31

SelSelChnNr Byte array Database items in the mail p1909

Rcpt String[47]

array

Array of four email recipients p1910

Flags word Flag array p1913

Each of the ten emails that can be defined can send a maximum of 20 channels. The

SelSelChnNr defines which channels to be included. It is not however the channel

number that is stored. It is the number of the database SelChnNr that points to the

channel. Thus changing the selection of channels that are to be stored in a database may

indirectly also affect the database emails.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 32

8. Summary pages

8.1. Introduction

The summary is a way to assemble and view channels, settings, curves and more that

belong in a context under one costume menu under View. The user manual has a basic

explanation of how to make summary page in chapter 14. Here you will find a list of all

the options when making a summary page.

8.2. Basic Settings

To make a new summary page go to Settings / Advanced / Summaries and select one

page. Pages that are already in use are marked with an *. Set the name of the page. This

is the name that will be shown as a new menu item on yellow background in the View

menu.

Change “Add to view menu” to Yes, and then click update. The summary page is now

available in the view menu, although it is empty.

8.3. Summary page rows

For each summary page up to 20 rows may be defined. Clicking on a row brings up a

row editing window.

Each of the available options will be explained briefly.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 33

8.3.1. Text, Header and Line

Text, header and line are simple summary rows. For Text and Header a text is entered.

Line has no options. It simply invokes a line.

The resulting summary page looks like:

The page name is always shown at the top of the page. Under that odd rows are given a

blue background colour and even rows have white background. The text row simply

shows a row of text. The header row displays a text in bold with a blue line under it.

The line row is somewhat obsolete since the alternating background colours were

introduced. It is basically a blank row.

8.3.2. Image

The image option will show a image, provided that an image has been uploaded to the

selected user file.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 34

8.3.3. Link

A link row will put a link in the summary page. Both an URL and a help text can be

entered. The help text is optional.

Clicking on the link will open it in a new window, or a new tab, depending on the

browser.

8.3.4. Channel value, Parameter value and Alarm status

The options Channel Value, Parameter Value and Alarm Status is quite similar in that

they show the present value of a selected object.

For each of these row the channel, parameter or alarm that is to be shown has to be

selected, and an optional help text can be entered.

On the summary page channels, parameters and alarms are shown in different colours

to make it easier to understand what is shown. The colour scheme is the same as is used

in for example graphical programming and the operator panel menu tool. Channel

names are green, parameter names blue and alarms red.

8.3.5. Database

The database option will add a database plot to the summary page.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 35

The arguments for the database row are which database and which values are to be

shown. The amount of data can also be defined. Note that loading much data can take a

long time. Just loading the applet takes some time.

The curves are shown with a single Y-axis.

8.3.6. Curve

The Curve option will display an editable curve on the summary page. Point can be

moved in the curve and saved, but the advanced and text based curve editing options

are not available.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 36

8.3.7. Edit parameter

An edit parameter row makes it possible to change a parameter value from the

summary page. Edit channel value works the same way for channels.

Which parameter to edit can be selected, and an optional help text can be entered. The

type of edit must also be specified. The default method is float, allowing the user to

type any number.

The other possibility is Boolean. This will show a checkbox that is either checked or

unchecked. Unchecked corresponds to parameter value 0 and a checked box to the

value 1.

8.3.8. Edit channel

There are four edit channel options, each deal with different channel properties.

Exactly how the edit channel math parameters row will look like depends on the math

function of the channel.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 37

Of special interest is the edit math parameters function for Hour meter math function.

This makes it possible to reset (or set any time) on an hour meter, for example after

service.

8.4. Limitations of summary pages

All text in a summary page is stored in a common memory space. This includes texts

for headers, text, help texts and URLs. The total amount of text for a summary page is

limited to 128 characters. This is not very much, and there is no warning when too

much text has been entered. The text buffer is simply truncated. After editing a page

with much text go to the view page and verify that all text looks as it was meant.

Editing text on one row may cause text on a later row to be truncated.

It is possible to leave gaps of rows of type none in the page definition. This may be a

good idea if things will be added later, as it is not possible to simply move or rearrange

the rows of a page definition.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 38

9. External Devices

9.1. Introduction

The use of external units, connections, device emails, and WMShare type definitions is

explained in the user manual. The subject will be further discussed in the script section.

This chapter will therefore mainly consist of parameter number listings.

9.2. External Device definition

Name Type Comment Parameter

Name String[20] A name p2000

TypID word Device definition ID

number

p2001

DEVICETYPEIDTEXT String Read only device type

name string

p2002

ComErrorTrigLimit word Number of failed questions

to trigger the fail condition

p2003

TelegramSettings byte array Telegrams update settings.

Code explained in script

section.

p2004

ParameterSettings Float array Device parameter values p2005

DEVICETELEGRAMTEXT String array Read only telegram name

string

p2010

DEVICEPARAMETERTEXT String array Read only parameter name

string

p2011

DEVICEVALUETEXT String array Read only value name

string

p2012

DEVICEUNITTEXT String array Read only value unit string p2013

DEVICESTATUS byte Status number, 0 = ok, 1 =

fail, 2 = trying

p2020

DEVICEVALUE Float array Device value p2021

DEVICETIME long int Time of last update in

seconds since 2000-01-01

p2022

Flags word Flag array p2091

External devices are more complex than the functionalities already discussed.

Information is managed not only by the parameter bank, but also by the GFBI or

AeACom motor. Only the names that are not all capital letters represents values

actually stored in the database. The other values are retrieved from the appropriate

communication motor.

The communication motors keep their own working copy of some of the information in

the parameter bank. This becomes apparent for the ParameterSettings. These settings

are copied to the motor at start-up, and whenever a new value is written. Device

parameter values can also be affected by channel connections or group scripts. This

will affect the working copy of the parameter setting, but not the value stored by the

parameter bank.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 39

9.3. Device type definition parameters

Name Type Comment Parameter

DEVICETYPEIDS word array All defined device type ID

numbers.

p2030

DEVICETYPEIDSTEXT String array Names of all defined

device types.

p2031

These two parameters access the list of all device types defined in the scripts in the

WMPro.

9.4. Connection definition

Name Type Comment Parameter

ChnNr byte Connected channel number p2100

DevNr byte Connected device number p2101

ValNr byte Number of the connected

value or parameter

p2102

TypeId word Type ID number for the

connected device

p2103

DefaultMode byte 0 = use at start-up, 1 = use

at start-up and error

p2104

DefaultValue float Default value p2105

Time long int Time of last update p2106

Status byte Connection / device status.

0 = OK, 1 = Fail, 2 =

Trying, 3 = Disabled, 4 =

Invalid, 5 = Unused.

p2107

ActionChnNr byte p2108

Flags word Flag array p2191

The type id number of the connected device is stored in the connection when it is

created or edited. If the external device later is changed so that the type id numbers no

longer match, the connection becomes invalid.

The connection has a non-standard use of some flags. Z=9 set to one means export, 0

import (from the device to the channel). Z = 12 is a flag for the trying state. Z = 13 set

means disabled. Z = 14 is set when the connection is invalid.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 40

9.5. Device email definition

Name Type Comment Parameter

Name String[20] A name p2200

TypID word Device type ID p2201

EMAILDEVICETYPEIDTEXT String Device type name p2202

EMAILDEVICEMAXDEVICES int Number of devices of

defined type

p2203

SendInterval long int p2204

SendStartTime long int p2205

SendTime long int p2206

Rcpt String[47]

array

Array of four email

recipients

p2208

Flags word Flag array p2291

9.6. WMShare parameters

WMShare type definitions

Name Type Comment Parameter

Name String[20] A name p2300

Key String array Key strings p2301

Flags word Flag array p2391

Server urls

Name Type Comment Parameter

Server String[47]

array

Array of four WMShare

server URLs

p2301

Export

Name Type Comment Parameter

SHARESELFKEY String array Key strings p2321

SHARESELFCHNNR byte array Channel numbers p2322

WebMaster Pro WMPro Reference Manual

Abelko Innovation 41

10. The Script Language

WebMaster Pro WMPro Reference Manual

Abelko Innovation 42

10.1. Introduction

The WMPro runs on script. It can do a few things, like measuring and

manage alarms, without scripts, but certainly not work as a controller.

Normally you do not see the scripts. You see the Controllers applet and the

graphical programming tool. In the background they generate scripts, and it

is these scripts that make the WMPro work as instructed. This and the

following chapters will reveal the secrets of the scripts and put all the

power of WMPro at your feet.

The user manual used a garden gnome as a simile to explain the script

interpreter in relation to channels, alarms and databases; A very small

garden gnome, somewhat stupid but very dedicated to its task. Every

second it wakes up and dutifully performs the tasks listed in the script files,

having access to almost all subsystems in the WMPro.

There are two script files, the Appscript.gps and the Userscript.gps. These

store the scripts in their text format. The user script is intended for the user

to edit. The user script file actually contains three different user scripts, with their own

separate program memory areas. The first is reserved for the controller applet. The

applet stores not only the script that implements the controller in this area, but also

metadata on the configuration. The second area is used for graphical programs. Both

the generated scripts and the graphical layout are stored here.

User script three however, this is where you are free to create your own scripts. It is

accessed through the script editor applet. This simple built in editor uses colour coding

to make scripts easier to read and write, and the applet hides all the other scripts stored

in the same file. When the user script is saved, it is first checked so that the syntax is

correct. If it contains errors this is reported, and the WMPro refuses to save the file.

The appscript file is part of the application, just as the web pages in appweb.bin are.

This file is distributed in update packages for WMPro. The difference between user

scripts and the appscript is that appscripts are allowed to initialize things at start-up.

The channels used for inputs and outputs are defined here, as are the databases.

Routines can be defined in the appscript, and in WMPro the system led is controlled by

a script in the appscript file. The appscript is also allowed to run special script code at

start-up. This code is allowed to do more things than the code that runs every second

can do.

If the WMPro is to be adopted for a special purpose, it may be suitable to use the

appscript to do so. When changing the appscript the WMPro will cease being a true

WMPro. It will be a new device based on the Goliath platform.

10.2. Language basics

The syntax of the script language is similar to that of Modula2 and other Pascal like

languages. It is NOT however a full featured programming language. It is designed to

be powerful and expressive enough to do everything you may need and want to do with

the platform, but in a way that prevents the programmer from making serious mistakes.

It is impossible to write a script that causes the system to crash. Of course an erroneous

script will not work, but the communication will continue and it will be possible to

replace the script file.

There are no types in the language. All operations are performed on floats. Constants in

initiations and alike can be of different types, but all variables are treated as floats and

all operators work with floats.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 43

There are no loop controls in the language. As the script itself is executed in an endless

loop they are not absolutely necessary. They are not part of the language as they

constitute an uncertainty in how long time they will need to execute, and a risk of being

or becoming endless.

There are no functions or procedures in the language, nor explicit global variables.

Subroutines exist, and channels may be used as global variables.

Scripts are stored as source code and are compiled at start-up every time. The initiation

parts of an application script are interpreted i.e. performed at the same time as the

syntax is checked. The rest of the script, that are to be executed later and possibly

repeatedly, is compiled into a binary format in a RAM-area.

The compiler has no error recovery. It will stop compiling when an error is found.

Separate user scripts are compiled separately and an error in one will not prevent

already compiled scripts from executing.

10.3. How to read a syntax graph

The syntax of the script language will be described using syntax graphs. This section is

dedicated to explain how to read and interpret these graphs. Below is an example from

the initialisation of operator panel menu structure.

To be readable, and printable, the graph is divided into sub graphs. The name submenu

in the example above is the name of this sub graph. A white box indicates a lexical

element. The keyword in the box has to be typed. The script interpreter is case

sensitive, so if a keyword is in uppercase letters it must be typed in uppercase letters.

A yellow box is a reference to another sub graph. By following a syntax graph a

syntactically correct statement, and ultimately program, can be formed. Follow the

direction of the arrows. In the example, after begin, a choice must be made. One of the

three possible lines can be followed. The bottom alternative is submenu, i.e. a reference

to itself. The lines also indicate that a loop is possible. A submenu statement may be

followed by another submenu statement.

SUBMENU “Example Headline” BEGIN

 SUBMENU “Submenu 1” BEGIN END;

 SUBMENU “Submenu 2” BEGIN END;

 SUBMENU “Submenu 2” BEGIN END;

END;

This submenu statement is syntactically correct according to the syntax graph. Note

tough that the syntax graphs only describes how to form syntactically correct

statements. They do not explain the semantics, what the statement will do. There may

also be other restrictions on what is allowed. It is syntactically correct to define a

million levels of submenus. The compiler will object though, as there is a limit defined

in the operator panel handling routines. There are also size constraints, and memory

constraints, that can prevent syntactically correct scripts from compiling.

(Note: The operator panel menu definitions used in the example are no longer a part of

the script language.)

WebMaster Pro WMPro Reference Manual

Abelko Innovation 44

11. User Scripts
User scripts are scripts that are executed every second. WMPro has defined three

different user scripts with separate program memory, but they are all defined in the

same file.

The number in the script declaration states which of the three user script storage places

to be used. Between the BEGIN and END statements several routines and other

definitions can be declared. Each routine will be called every second, in the same order

as they are declared. The order between the scripts is such that the routines in the

application script are executed first, then user script one, two, and finally three.

USER SCRIPT 3 BEGIN

 …

END;

If two user scripts are declared with the same number, the second will overwrite the

first.

When using the built in script editor the line “USER SCRIPT 3 BEGIN” and “END;”

will automatically be added and are not shown. You can start writing routines directly.

Routines are the basic script program element. The other possible program elements

shown in the syntax graph are related to communication and external devices.

11.1. Routine declarations

A routine is a subroutine that can be executed every second. In a user script all declared

routines will be executed once every second, in the order they are declared in the file.

A routine should take care of one specific task or subsystem in the application. This

makes the script code easier to understand and easier to reuse. If the application cannot

be broken up in smaller tasks, then one big routine might be the best solution. Routines

cannot communicate with each other than trough common channels. If two routines

have very many common channels the code may be more readable and less error prone

if they merged in to one large routine.

Below is the syntax graph for a routine:

WebMaster Pro WMPro Reference Manual

Abelko Innovation 45

The routine_id, routine identifier, is simply a name for the routine. As al identifiers it

must be one word with no separators in it. It may include letters, digits and the “_”

character.

ASCII codes Category

65..90, 95, 97..122, 128..255 LETTER

48-57 DIGIT

11.1.1. The Alias section

In the alias section it is possible to create aliases for channels, parameters, curves,

alarms, and time controls (calendars). In user scripts this is necessary to connect the

routine with the rest of the WMPro.

To declare an alias in the alias section, simply write a new name, an equals sign, and

then object it will represent. The object must be an existing object. To the right of the

equal sign you can use an absolute identifier, as specified by the syntax graph below:

The number between the square brackets is the index of the referenced object. For

channels this is a number between 1 and 200, parameters is 1 to 100, alarms 1 to 50,

calendar 1 to 5 and curves ranges from 1 to 10.

If it sounds awkward to keep track of channel indexes, be calm. The script editor has a

tool to help generating aliases. There is also a tool for exchanging aliases when reusing

a routine in a new context. This will be explained in detail in a later chapter.

Below is an example of a routine declaration, including an alias section.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 46

 ROUTINE Example

 ALIAS

 Temperature = CHANNEL[1];

 RefTemp = PARAMETER[1];

 PFactor = PARAMETER[2];

 TempToValve = CURVE[3];

 Valve = CHANNEL[25];

 VAR

 Err;

 BEGIN

 Err := RefTemp - Temperature;

 Valve <- TempToValve(Temperature) + Err * PFactor;

 END;

Note that an alias is not a C-style define. You can only create aliases for objects, like

channels and parameters. The number between the square brackets must formed by

digits. Expressions are not allowed.

11.1.2. Variables

In a routine it is possible to define local variables. This is done in the var-section,

where variable names simply are stated. Since the script language has no types, this is

all that is needed.

All variables are initialised to zero when execution starts. They are, unlike normal local

variables in Modula2, Pascal or C, persistent between calls. If a value is assigned to a

variable, the variable will hold this value until assigned another value, or until the

system is restarted.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 47

11.2. Statements LT

Statements includes assignments, if statements and other things that actually do

something. Statements_lt is the limited subset of statements that are allowed in

routines.

11.2.1. Channel and Variable assignment

The assign_var sub-graph describes the syntax for assigning variables and channels.

When a variable is assigned a value, it will store that value until it is assigned another

value. Therefore this assignment uses a unconditional assignment operator “:=”.

Assigning a value to a channel has a different syntax, as it has a slightly different

meaning. A channel is not a simple variable, it can be defined to things with the value

like filtering or summing. The operator “<-” should not be read as assign, but rather as

feed.

When a value is fed to a channel, it will hold this value until the next time it is updated.

If the channel is connected to an input the value will be overwritten with a new reading.

(Although allowed, feeding values to channel that has a source configuration, other

than an output, is considered bad programming and not recommended.) If it is

connected to an output it will act like a variable, but of course send the value, with

scaling, out to the output port.

If the channel has no source, and is not feed values from anywhere else, but is

configured to do mathematical operations, then the situation is interesting. After an

assignment, or feed, the channel will hold the value it was assigned. Before the next

call to the routine, the next second, the channel will have been updated. It then holds

the value that is the result of the mathematical operation. Using a channel this way

makes the program hard to read, and is normally not recommended.

The normal use of channel assignment is to update outputs, channels stored in

databases and channels monitored by alarms. Unconnected channels can also be used

for communication between routines, and to make internal states visible.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 48

11.2.2. IF-statements

The IF statements in the script language has a syntax like in modula2. They are very

important, as they constitute the only program flow control mechanism in the language.

If the expression after IF keyword is evaluated to a nonzero value it is considered true

and the statements after THEN will be executed. If it is zero the next ELSIF will be

tried. If no IF or ELSIF expression is nonzero the ELSE statements will be executed,

if it exists.

 ROUTINE IfExamples

 ALIAS

 Temp = CHANNEL[1];

 Valve = CHANNEL[25];

 Force = PARAMETER[1];

 FValue = PARAMETER[2];

 Warning = CHANNEL[50];

 BEGIN

 IF Temp > 95 THEN

 Warning <- 1;

 ELSE

 Warning <- 0;

 ENDIF;

 IF Temp > 80 THEN

 Valve <- 100;

 ELSIF Temp > 60 THEN

 Valve <- 60;

 ELSIF Temp > 40 THEN

 Valve <- 20;

 ELSE

 Valve <- 0;

 ENDIF;

 IF Force THEN

 Valve <- FValue;

 ENDIF;

 END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 49

11.2.3. Reset statements

The reset statement is used to reset the mathematical function of a channel that is not

reset by database updates. Se the chapter on channels for information on which

mathematical functions need reset.

11.2.4. Print statements

The print statement is a debug utility that enables trace printouts during execution. The

string and the value of the expression are printed to the debug port. It is also possible to

see them in the system log file. It should only be used temporarily for debugging.

Filling the system log file with script printouts may hide other more important system

printouts.

11.2.5. Call statements

The call statement executes the referenced subroutine. In a routine only other routines

can be called. In a procedure both other procedures and routines can be called.

In user scripts calling is less useful, as all defined routines will be executed in the order

they are defined.

In later chapters groups and iterators will be defined. Group iterators must be called

from a routine as they are not automatically executed.

11.2.6. Acknowledge

The acknowledge statement can be used to acknowledge all alarms.

The intended use is to make it possible to reset alarms by pressing a button connected

to a digital input. Use it with care!

11.2.7. Disable and enable alarms

A new feature in the 3.1 release is the possibility to disable and enable alarms from

scripts. When disabled the alarm can no longer become active. If it is active when

disabled it will become inactive if it is set to automatic. If it is set to be acknowledged it

will still be necessary to acknowledge it.

ENABLEALARM enables an alarm previously disabled with DISABLEALARM.

The intended use for these commands is to make it easier to disable alarms that are not

valid in certain operational modes, such as when a machine is not running, or to disable

alarms for optional features that are not enabled.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 50

11.2.8. Set and Clear manual override

A new feature in the 3.1 release is a possibility to set and clear manual override from

scripts. CLRMANUALOVERRIDE disables manual override for the argument

channel. This can be useful if there are certain states when stupid users should not be

able to manually override your clever program.

SETMANUALOVERRIDE makes the interface symmetrical, and maybe it will be

useful to someone sometime.

The statements are equal to check and uncheck the manual override checkbox in the

web interface.

11.2.9. Comments

To make comments, use the “%” sign. The rest of the line will be treated as a comment.

ROUTINE StatementsExample

ALIAS

 LeftEnd = CHANNEL[17]; %Left end reached (DIN)

 RightEnd = CHANNEL[18]; %Rigth end reached (DIN)

 GoLeft = CHANNEL[25]; %(DOUT)

 GoRigth = CHANNEL[26]; %(DOUT)

 TimeLeft = CHANNEL[50]; %Counting on time for GoLeft

 TimeRigth = CHANNEL[51]; %Counting on time for GoRigth

VAR

 Direction;

BEGIN

 IF Direction = 0 THEN

 GoLeft <- NOT LeftEnd;

 GoRigth <- 0;

 ELSE

 GoLeft <- 0;

 GoRigth <- NOT RightEnd;

 ENDIF;

 IF LeftEnd AND (Direction = 0) THEN

 Direction := 0;

 RESET(TimeLeft);

 PRINT("Left end reached, Direction = ", Direction);

 ENDIF;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 51

 IF RightEnd AND (Direction = 1) THEN

 Direction := 1;

 RESET(TimeLeft);

 PRINT("Right end reached, Direction = ", Direction);

 ENDIF;

 CALL IfExamples;

END;

This is an example on print, reset and call statements, as well as on comments. The idea

behind the example is some sort of system going back and forth between two

endpoints. Every time and endpoint is reached the direction is changed, and a debug

message printed.

TimeLeft and TimeRight are supposed to be channels that count the on time for the

GoLeft and GoRigth outputs. The counters are reset every time the direction is

changed. They could be monitored by alarms to detect fault conditions, when the

endpoint is not reached in reasonable time.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 52

11.3. Expressions

Expressions are mathematical expressions that will result in a single number. An

expression may be a single digit, or a complex mathematical formula with references to

channels, variables, parameters and curves.

This syntax graph is somewhat complex, yet expressions are quite intuitive. Starting in

the middle section, with the simple number. There is not much point in showing a

syntax graph for numbers. They consist of the digits 0 to 9, and optionally a decimal

point followed by more digits.

Channels can be referred either by an alias or define name, or the CHANNEL keyword

with the index in angle brackets (as shown in alias examples). The same is true for

parameters, except that the keyword is PARAMETER. Variables and constants are

referred to by name.

“res_const” stands for reserved constant and are names that represents a constant value

defined in the language itself. This category has only one member: PI.

11.3.1. Unary operators

An unary operator is an operator that operates on a single operand. The operand is to

the right of the operator. The minus sign will negate the value standing on the right side

of it. This means that writing –1.23 becomes syntactically correct.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 53

The NOT operator is a Boolean operator. All Boolean operators treat a nonzero value as

true, and zero as false. The not operator will make nonzero values zero, and change

zero values to the nonzero value of one. All Boolean operations in the script language

resulting in the value true will be represented by the value one.

11.3.2. Infix operators

Infix operators work on two operands, and is placed between the two operands. In an

expression with infix operators precedence is important. 4 / 2 + 2 is 4 and not 1,

because the / operator has higher precedence than +.

The table below lists all infix operators with highest precedence first.

Operator Boolean result Comment

XOR X Exclusive or

OR X

AND X

^ Power, x^y is the same as x
y
.

* Multiplication

/ Division

MOD Modulus, 11 MOD 5 is 1.

- Subtraction

+ Addition

<> X Not equal

<= X Smaller than or equal

>= X Bigger than or equal

< X Smaller than

> X Bigger than

= X Equals

Operators with a Boolean result will return either one or zero. Note that the NOT

operator has higher precedence than XOR.

11.3.3. Parenthesis and memory requirements

The syntax allows the use of parenthesis in expressions. 4 / (2 + 2) is 1. Use parenthesis

when it is required, when it makes the expression easier to understand and when there

are doubts on how the precedence works.

There is no optimisation during compilation of a script. Expressions will be stored and

evaluated as they are written. When they are stored in binary form it is the meaning of

each operator and operand that is stored, not the text itself. A plus operator takes only

one byte in the source code file, but 14 in compiled binary form. A pair of parenthesis

also takes 14 bytes to store. A constant value always takes six bytes in compiled form.

It will not matter if it is written as 1 or 1.00000000000000.

The lesson from this is that it is good practise to write expressions in a precise manner.

Writing x * 14 / 4 instead of x * 3.5 will make the script interpreter execute the 14 / 4

division every time.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 54

11.3.4. Reserved functions

It was stated earlier that there are no functions in the script language. It is true that you

cannot define your own functions, but there are built in functions.

This is standard library functions and should not require many comments. Angels are

presented in radians. The SIGN function returns –1 for negative arguments, 1 for

positive and 0 if the argument is zero. The TIMELEFT function returns the number of

seconds left to the next predicted state change of a time control.

There are also a few functions that do not take an argument.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 55

TIME returns the number of seconds since 1/1 year 2000. This function is depricated

and should not be used. The problem with it is that a float cannot store that large

numbers without losing significance. The value changes only every 16:th second (year

2006) and as the number grows it will change even more seldom.

With the release of WMPro 2.0 six new time functions are available. They return

different parts of date and time, as presented by the real time clock.

 RAND and RANDN return random numbers. RAND returns a uniformly distributed

random number between 0 and 1. RANDN returns numbers with the approximate

N(0,1) normal distribution.

11.3.5. New expressions in R3.1

In R3.1 a new expression is available to check whether a channel is in manual override

or not.

If the channel has the manual override math function set, and manual override is active

(the Show3 flag is set), the expression returns one. Otherwise it returns zero.

11.3.6. Curves

Curves can also be called as functions. The curve identifier should be followed by an

argument expression in parenthesis. The curve function looks up the interpolated y

value corresponding to the argument x value.

11.3.7. Examples and error handling

Below is a table with example expressions and what they evaluate to. X, y and z are

variables assigned the values 4, 2, and 100.

x := 4.000000

y := 2.000000

z := 100.000000

x^y+0.5*z 66.000000

SIN(PI/2.0) 1.000000

FLOOR(11/5) 2.000000

11 MOD 5 1.000000

x=2 0.000000

x=2*y 1.000000

x AND y > z 0.000000

SIGN(x * -PI) -1.000000

SQRT(x) 2.000000

SQRT(-1) 0.000000

2/0 999999939489602418518643389688.804746

LN(-1) -999999939489602418518643389688.804746

LOG10(0) -999999939489602418518643389688.804746

The last four examples are examples of illegal mathematical operations. They do

however give results anyway. The results are the most reasonable results possible, and

will prevent the system from crash. The last three are large numbers that represents

positive and negative infinites.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 56

12. The Script Editor
Selecting Settings / Advanced / Script brings up the script editor. The editor loads the

user script file, but filters out the part of user script three meant for user edit and

displays only that.

The main features of this editor are the syntax highlighting, alias generating assistance,

and the save button that checks syntax before saving. Additional features are available

in the snippets interface, where routines and can be saved and loaded in goliath

platform skript snippets files.

12.1. Syntax highlighting

Below is an example of a script in the script editor.

Important keywords, such as begin, end, if, then etc, are shown in blue, and made bold.

Other script keywords that appear are coloured green. Note that the script interpreter is

case sensitive and that all keywords must be typed in capital letters.

Colour coding work as you type, so if a keyword does not become blue or green when

ready it is probably misspelled.

Identifiers and operators are black. To increase readability Identifiers should be given

names including lowercase letters. Numbers are pink.

There is no example of this in the script above, but strings, always enclosed by “”

marks are red. Comments are coloured grey.

12.2. Inserting Aliases

Above the editing window there are to drop down lists and a button labelled Insert

Alias. When you come to the alias section of a routine you can type the alias name and

a space. Then select which kind of alias in the first drop down list, and then the item in

the second drop down list.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 57

When you click Insert Alias the alias line will be finished for you.

The comment includes the name of the aliased object.

12.3. Saving the script

To save a script simply press save. The file will be sent to the WMPro. The WMPro

will check if the syntax is correct, and if it is the file will be saved and the WMPro will

reboot. When it starts again the new script will be active.

If, however, there is an error in the script, the WMPro will return an error message

instead of saving the file. The error message is shown in the message window in the

bottom.

In the example above an x has been inserted right after BEGIN, making that keyword

invalid. When saving the WMPro replies after a few seconds with the message

“UserScript.gps line 568 col 8 Syntax error: Expected ';', Found 'Timer'”.

First, don’t be confused by the high line number. The line number refers to the whole

userscript file, which may include controllers, graphical programs and other things you

do not se. The position of the cursor is always shown above the message window. The

erroneous x was inserted at row 567 col 7.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 58

Finding the cause of an error message is not always a simple task. The parser expected

a ‘;’ instead of Timer on row 568, but that will not correct the misstake. What has

happened is that the parser accepted BEGINx as another variable name, and as such it

should have been followed by a semi colon. In this case it is quite easy to se that the

BEGINx is incorrect, as it is no longer colour coded blue.

When searching for syntactical errors they are either located where the error message

indicates or somewhere earlier. A missing END or ENDIF keyword can result in error

messages far from the actual error. Keeping the code indented makes finding such

errors easier.

In the example above, commenting out the ENDIF on row 571 cases an error message

for row 585, where the routine ends.

This is also an example of multiple error messages on the same error. Do not let the

multiple messages confuse you, the parser always stops on the first error it encounters.

The multiple messages is only there to give you extra hints on what the parser was

doing.

When an error has been corrected press save again. Unless you made a new mistake in

your attempt to correct the first, the parser will continue to the next error, or actually

save the file.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 59

12.4. The Snippets Interface

The snippets interface is just briefly discussed in the user manual. It is a tool to work

with scripts on a higher abstraction level. In the snippets interface you do not work with

code directly, but with routines and other script elements as objects. The interface is

opened by clicking the snippets button.

All the script objects in user script three are listed in the main window. If there is a

comment, like for the ExampleCtrl routine from chapter 11.1 and 11.3 it will be shown

in this window.

If a routine is selected in the main window all aliases will be shown in table at the

bottom half of the window. The alias name and type is listed in the first columns. If

there is a comment on the alias row it will be shown in the column labelled Description.

The rightmost column shows the name of the channel or other object the alias is

connected to.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 60

12.4.1. Editing aliases

This table is not only a pretty tool to look at routines with; you can actually change the

alias connections here. By clicking on an element in the connection row you get a drop

down list showing all objects of the specified type in the WMPro. You can select a new

object for the alias.

Pressing Apply will transfer all changes you have made in the snippets tool to the editor

window, and close the snippets interface. If you press close all changes will be ignored.

The changes will not be saved to the WMPro unless you also press save in the script

editor window.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 61

It is only routines that have an alias section that will show anything in the alias table.

12.4.2. Saving and loading snippets

The main reason for the snippets interface is to make it easy to reuse routines and to

load device type definitions and other code to get external devices work.

The save to file button saves the selected snippet to a .gpss file. Gpss stands for goliath

platform script snippet. Insert from file load snippets from a file. A .gpss file can

contain several snippets, and they will be inserted after the selected snippet, or first if

no snippet is selected.

Remember to press apply and then save to activate the loaded script snippets.

Snippets for external devices will normally not need any editing, but if a routine with

an alias section is loaded it may be a good idea to check out that the aliases are

connected to appropriate objects in the WMPro you are working with. When writing a

routine that will be reused, make sure you use alias names and comments that helps the

user to make correct connections.

12.4.3. Moving and deleting snippets

By using the up and down buttons in the snippets interface you can change the order of

the snippets in the file. For routines the order in the file determines the execution order,

which may be crucial. For snippets that has references to other snippets the order is also

important. A reference to something that has not yet been defined renders a syntax

error.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 62

13. GFBI Type Definitions

13.1. The General Field Bus Interface

The DEVICETYPE definition defines a class of external devices on RS485 using the

General Field Bus Interface (GFBI). GFBI is general, but with limits. It can handle

protocols on the RS485 that follows these criteria:

 The WMPRo is master, slaves are quiet unless they answer a question from

the master.

 The size of a correct answer to a specific question is constant and known.

 Data is in binary form, no strings.

 The checksum or crc method can be handled by GFBI. (Should be true for

most protocolls.)

 The units accepts an intertelegram gap of 3.5 characters (silence) as legal.

 The communication speed is between 300 and 115200 bps.

Different device types using different protocols can be connected at the same time,

provided that they do not interfere with each other. Care must also be taken in each

system so that the computational power of the WMPro is sufficient to handle all

connected devices as expected.

The GFBI handles telegrams. The device type definitions define how a question

telegram should be compiled. The GFBI motor sends this telegram on the RS485 line

and starts to listen for an answer of the correct size. If one is received within the

timeout period it is parsed using the reply definition.

Telegram settings accessible from the external device settings page decide the

minimum delay between how often a specific question is asked. Only one question can

be sent to a specific device every second, but GFBI can send question to many devices

during the same second.

13.2. The Device Type Definition

13.2.1. Overview

Each device type has a name, visible in web pages, and a type number. The type

number is what truly identifies the definition, and must be unique. The script name also

used is less important.

As mentioned before the definition holds a number of variables, some with public

names as parameters, other with public names as values and some are only for script

use.

The communication speed and checksum type is defined for all telegrams, and then the

telegrams themselves are defined. Telegram definitions consist of a question compiler

and an answer interpreter. The web page interface limits the number of telegrams to

ten, each with a public name

WebMaster Pro WMPro Reference Manual

Abelko Innovation 63

13.2.2. Syntax

Below is the syntax graph for a device type definition.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 64

Where namedef has the following syntax graph:

The first string is the actual name. The optional string within brackets defines a unit and the

optional last keyword defines the formating when the value is printed.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 65

The syntax graph for a framecompiler and a frame interpreter follows:

WebMaster Pro WMPro Reference Manual

Abelko Innovation 66

13.3. Example

Below is an example for a definition of a device using a propriety protocol (a

KomfortEl41F from Abelko, an apartment heat control unit).

DEVICETYPE KomfortEl41F NAMED "KomfortEl41F" TYPEID 1003

IS

 PARAMETER

 Id :"Address";

 sbTemp :"Set back temperature" ["°C"];

 PUBLIC

 inTemp :"Apartment Temp" ["°C"];

 Z1 :"Zon1" ["°C"];

 Z2 :"Zon2" ["°C"];

 Z3 :"Zon3" ["°C"];

 Z4 :"Zon4" ["°C"];

 DI :"Digital Input";

 Boiler :"HotWater";

 PRIVATE

 Outdoor;

 BAUDRATE 9600;

 CHECKSUM SUM8;

 TELEGRAM ReadStat NAMED "R Stat" IS

 QUESTION

 DATA[0] := HEX(01);

 DATA[1] := HEX(FE);

 DATA[2] := HEX(06);

 DATA[3] := HEX(52);

 DATA[4] := HEX(AD);

 DATA[5] := BYTE(Id);

 DATA[6] := HEX(00);

 DATA[7] := HEX(FF);

 DATA[8] := HEX(FF);

 ANSWER SIZE 24

 DATA[0] = HEX(01);

 DATA[1] = HEX(FE);

 DATA[2] = HEX(14);

 DATA[3] = HEX(52);

 DATA[4] = HEX(AD);

 DATA[5] = BYTE(Id);

 DATA[6] = HEX(10);

 DATA[7] -> WORD(Z1 := 0.1*ROUND((DATA / 25.6)););

 DATA[9] -> WORD(Z2 := 0.1*ROUND((DATA / 25.6)););

 DATA[11] -> WORD(Z3 := 0.1*ROUND((DATA / 25.6)););

 DATA[13] -> WORD(Z4 := 0.1*ROUND((DATA / 25.6)););

 DATA[15] -> WORD(inTemp := 0.1*ROUND((DATA /

25.6)););

 DATA[19] -> BYTE(DI := DATA;);

 TIMEOUT 1000

 END;

END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 67

13.4. Semantics explanation

13.4.1. First row

The first row, from DEVICETYPE to IS, is not very complicated. The identifier

directly after the DEVICETYPE keyword is there for consistency more than anything

else. It is not possible to reference a device type by this name from anywhere else in a

script. The TYPEID number is the only way to reference a type. The reason for this is

that the name follows normal scope rules, and does not survive between different

scripts. It should however be possible to access a device type defined in application

script from a user script, and using the device number it is.

The device number is a number between 1 and 65535. Each device type must have a

number that is unique in the WMPro. To avoid potential errors and confusion they

should be truly unique.

The NAMED string is the name for the device type as it will be presented on the web

pages.

13.4.2. PARAMETER, PUBLIC and PRIVATE

After the PARAMETER keyword all parameter variables are defined. The definition

consists of an identifier and a name string. The name string is used on the external

device settings page, as parameter values can be set by the user. After the name string

comes, optionally, a unit string and a format specifier. In the script these variables are

not assignable.

The variables after the keyword PUBLIC are pretty much the same, but these are true

variables, and their string names and values are presented on the external devices view

page.

Variables defined after PRIVATE does not have an associated string, as they are not

presented to the user.

13.4.3. BAUDRATE and CHECKSUM

The BAUDRATE definition sets the baudrate for all telegrams. The number must be

between 300 and 115200.

The CHECKSUM definition defines what kind of checksum is used on the telegrams. It

is used both on questions and replies.

SUM8 is simply the sum of all bytes, stored in a single byte. ZSUM8 is the same thing,

but the checksum value is such that the sum of all bytes including the checksum is zero.

The optional SKIP number defines that a number of bytes in the beginning should not

be part of the checksum.

SUM16 and ZSUM16 is basically the same thing, but with word (16 bit) size sums. For

these there is also the option SWAPPED. In the WMPro integers are stored in the big

endian style, with the high byte last. If the protocol uses little endian, use SWAPPED.

The MODBUS keywords sets the checksum to be modbus style CRC. The swapped

and skip keywords can be used here to. The CRC8 and CRC16 keywords starts a

general CRC definition. This is explained in detail in section 12.7.

If the checksum is not placed last in the telegram, use the POSTBYTES keyword to

define how many bytes comes after the checksum.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 68

13.5. Telegram definitions

A device type definition can have up to ten telegram definitions. Each telegram defines

a string that is used in the settings page for external devices, where the user can set how

often, if at all, a question should be asked.

13.5.1. Question compiler definition

The question part of a telegram definition states how the frame sent to the external

device should look like. Each byte of the frame must be defined. This is done assigning

values to a data array. DATA[n] represents the n’th byte in the frame. It can be

assigned to a value using colon equals “:=” assignment.

The simplest form of assignment is using HEX, where the byte is assigned a constant

hex value. The HEX function only accepts a single byte value, described by two letters.

A to F must be capital when used.

The BYTE, WORD and RWORD takes an expression as argument. The only identifiers

in scope are the variables and parameters defined in the DEVICETYPE, but

calculations can be made on them.

With the BYTE keyword the value is typecasted to a char and assigned to the byte.

WORD and RWORD typecasts the value to and int, and assigns it to byte n and n+1.

Word uses big endian and RWORD little endian.

FLOAT stores the value as a four byte float.

When using the left arrow assignment “<-” one or several statements are expected

between the left and right parenthesis after the keyword. Allowed keywords are BYTE,

WORD, RWORD, and FLOAT. The execution of the statements must result in that the

special variable DATA is assigned a value. DATA is an automatic variable that is in

scope for these statements. The main intended use for this construct is to allow IF-

statements.

The GFBI automatically appends the checksum as defined after the highest frame index

used. If not all bytes in the frame are assigned a value the result is unpredictable.

13.5.2. Answer parser definition

For an answer the expected size, in bytes, must be defined. Any reply with the wrong

size is considered faulty.

The checksum must also be correct. A special counter keeps track of checksum errors.

It is accessible from the view external devices page, along with other communication

statistics for each device.

Next step in validating the answer is by the answer parser. Individual bytes and words

in the received frame are accessible with the DATA[n] keyword, as for the question

compiler. Here data is not assigned, but with equal operator a check is made that the

data in the frame equals the expression on the right side of the equal sign. HEX, BYTE,

WORD, RWORD and FLOAT are used exactly as they are in colon equals assignment

in questions.

If one or more equalities do not hold the frame is considered faulty. A format error

counter will be increased. The parsing will stop when the first mismatch is found.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 69

Hopefully some answer will also contain some useful information. To use information

the use, right arrow, assignment is used. This compares with the left arrow assignment

in the question compiler definition. BYTE, WORD, RWORD, and FLOAT keywords

are allowed, and statements are expected between the left and right parenthesis. The

difference is that the automatic variable DATA will have been assigned with the value

from the frame. The normal use of this construct is to assign a scaled version of DATA

to a public or private variable.

13.5.3. Floating point support in R4.0

In Release 4.0, with firmware 2.4.2, FLOAT support has been extended. New

keywords interpret and generate IEEE floating point values with different byte order.

FLOAT, byte order ABCD, native byte order

RFLOAT, byte order DCBA, Reversed byte order

BSFLOAT, byte order BADC, Byte swapped order

WSFLOAT, byte order CDAB,Word swapped order

13.5.4. TIMEOUT

The last part of a telegram definition is the timeout. This is the number of milliseconds

the GFBI will wait for a reply before giving up.

13.6. A MODBUS Example

MODBUS is a standardized protocol on RS485. Information on MODBUS is available

at www.modbus.com. The standard specifies how a frame should look like, with a

header and a CRC. It also specifies some standardized function numbers and how they

should work, and exception codes.

Data is accessed trough registers. Register addresses and their contents is device and

manufacturer specific. There should be a specification available for each MODBUS

device specifying which function codes are supported and what register addresses are

used, and how to interpret their value.

Writing a GFBI devicetype specification for a MODBUS device should be quite

straightforward. MODBUS on RS485 comes in two flavors, RTU and ASCII. RTU is

the binary form, and the one that can be handled with GFBI. The MODBUS standard

says that all slaves must support RTU mode. ASCII mode is optional.

Address Function

Code

DATA CRC CRC

Basic outline of a MODBUS frame.

13.6.1. WM22-DIN power analyser from Carlo Gavazzi

In this example we will write a type definition for a power analyser from Carlo

Gavazzi, the WM22-DIN. The protocol specification document states that that this

module uses MODBUS-RTU on RS485 with 9600 baud, one start bit, 8 data bits, one

stop bit and no parity. This mean that it should work just fine with the GFBI.

This unit does many things, but we want to read voltage, current and power on three

phases. We will however begin with something simple. In the specification document

there is a description on how to read an instrument type identification code. This code

should be 14. The question to send is:

01h 04h 00h 0Bh 00h 01h 40h 08h

http://www.modbus.com/

WebMaster Pro WMPro Reference Manual

Abelko Innovation 70

The instrument should reply with:

01h 04h 02h 00h 0Eh 38h F4h

The first byte is the slave address; the second is the function code. Four is the code for

read register. In the question the next two bytes is the register address, followed by two

butes specifying the number of registers we want to read. The last two bytes is the

CRC.

The reply starts with the same two bytes as the question. The third bytes is the number

of bytes that follows before the CRC. Then come two bytes of data, the instrument type

code. Last is, as always, two bytes of CRC.

Below is code for a DEVICETYPE for WM22, with a telegram definition to read the

instrument type code.

DEVICETYPE WM22 NAMED "WM22-DIN" TYPEID 2001 IS

 PARAMETER

 Id :"Address";

 PUBLIC

 TypeCode :"Type Code";

 L1U :"L1 Voltage" ["V"];

 L2U :"L2 Voltage" ["V"];

 L3U :"L3 Voltage" ["V"];

 L1I :"L1 Current" ["A"];

 L2I :"L2 Current" ["A"];

 L3I :"L3 Current" ["A"];

 L1P :"L1 Power" ["W"];

 L2P :"L2 Power" ["W"];

 L3P :"L3 Power" ["W"];

 PRIVATE

 VScale;

 AScale;

 PScale;

 BAUDRATE 9600;

 CHECKSUM MODBUS SWAPPED;

 TELEGRAM ReadTypeCode NAMED "R Type Code" IS

 QUESTION

 DATA[0] := BYTE(Id);

 DATA[1] := HEX(04);

 DATA[2] := HEX(00);

 DATA[3] := HEX(0B);

 DATA[4] := HEX(00);

 DATA[5] := HEX(01);

 ANSWER SIZE 7

 DATA[0] = BYTE(Id);

 DATA[1] = HEX(04);

 DATA[2] = HEX(02);

 DATA[3] = HEX(00);

 DATA[4] -> BYTE(TypeCode := DATA;);

 TIMEOUT 1000

 END;

END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 71

The device address is declared as a parameter, and all the values we will want to read

are declared public. There are also three private scaling variables that will come to use

later.

The CHECKSUM declaration is important. The CRC calculation method described in

the Modbus standard has a special keyword in the script definition, but it also has to be

declared as SWAPPED.

This simple well defined telegram is a good way to test that the basic settings, like

address, baudrate, checksum, and the physical wiring not the least, really works.

13.6.2. Reading data and scaling information

Registers in Modbus are two byte words. DATA[4] and DATA[5] in the question

forms the number of registers to be read. DATA[2] in the answer is the number of bytes

in the answer. This should be twice the number of requested registers.

As measured values are read from word sized registers they often need to be scaled in

order to get a decimal point in the reading. Often the scaling is fixed for specified

registers, and stated in the documentation. In the WM22 however, the scaling for Volt,

Ampere and Watt readings are not fixed. The scaling to be used is coded into a byte

and stored in register addresses 0244h 0245h and 0246h. We need a telegram to read

these registers and store the scaling factors in the private variables VScale, AScale and

PScale. As they are consecutive we can read them all at once, specifying that we want

to read three registers starting at 0244h.

 TELEGRAM ReadFormatInfo NAMED "R Format Info" IS

 QUESTION

 DATA[0] := BYTE(Id);

 DATA[1] := HEX(04);

 DATA[2] := HEX(02);

 DATA[3] := HEX(44);

 DATA[4] := HEX(00);

 DATA[5] := HEX(03);

 ANSWER SIZE 11

 DATA[0] = BYTE(Id);

 DATA[1] = HEX(04);

 DATA[2] = HEX(06);

 DATA[3] -> BYTE(

 IF DATA = 3 THEN

 VScale := 0.001;

 ELSIF DATA = 4 THEN THEN

 VScale := 0.01;

 ELSIF DATA = 5 THEN THEN

 VScale := 0.1;

 ELSIF DATA = 6 THEN THEN

 VScale := 1;

 ELSIF DATA = 7 THEN THEN

 VScale := 10;

 ELSIF DATA = 8 THEN THEN

 VScale := 100;

 ELSIF DATA = 9 THEN THEN

 VScale := 1000;

 ELSIF DATA = 10 THEN THEN

 VScale := 10000;

 ELSIF DATA = 11 THEN THEN

 VScale := 100000;

 ELSIF DATA = 12 THEN THEN

WebMaster Pro WMPro Reference Manual

Abelko Innovation 72

 VScale := 1000000;

 ELSE VScale := 0;

 ENDIF;

);

 DATA[4] -> BYTE(

 IF DATA = 3 THEN THEN

 AScale := 0.001;

 ELSIF DATA = 4 THEN THEN

 AScale := 0.01;

 ELSIF DATA = 5 THEN THEN

 AScale := 0.1;

 ELSIF DATA = 6 THEN THEN

 AScale := 1;

 ELSIF DATA = 7 THEN THEN

 AScale := 10;

 ELSIF DATA = 8 THEN THEN

 AScale := 100;

 ELSIF DATA = 9 THEN THEN

 AScale := 1000;

 ELSIF DATA = 10 THEN THEN

 AScale := 10000;

 ELSIF DATA = 11 THEN THEN

 AScale := 100000;

 ELSIF DATA = 12 THEN THEN

 AScale := 1000000;

 ELSE AScale := 0;

 ENDIF;

);

 DATA[5] -> BYTE(

 IF DATA = 3 THEN THEN

 PScale := 0.001;

 ELSIF DATA = 4 THEN THEN

 PScale := 0.01;

 ELSIF DATA = 5 THEN THEN

 PScale := 0.1;

 ELSIF DATA = 6 THEN THEN

 PScale := 1;

 ELSIF DATA = 7 THEN THEN

 PScale := 10;

 ELSIF DATA = 8 THEN THEN

 PScale := 100;

 ELSIF DATA = 9 THEN THEN

 PScale := 1000;

 ELSIF DATA = 10 THEN THEN

 PScale := 10000;

 ELSIF DATA = 11 THEN THEN

 PScale := 100000;

 ELSIF DATA = 12 THEN THEN

 PScale := 1000000;

 ELSE PScale := 0;

 ENDIF;

);

 TIMEOUT 1000

 END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 73

The scaling information is decoded directly in the answer parser. If addresses where the

byte codes are retrieved from seems strange, that is because Carlo Gavazzi uses a direct

memory map of registers, not really in line with the Modbus intentions.

Next step is to retrieve the actual values. They are to be read from register 0200h to

0212h. A single telegram is sufficient.

 TELEGRAM ReadMeter NAMED "R Meter" IS

 QUESTION

 DATA[0] := BYTE(Id);

 DATA[1] := HEX(04);

 DATA[2] := HEX(02);

 DATA[3] := HEX(00);

 DATA[4] := HEX(00);

 DATA[5] := HEX(09);

 ANSWER SIZE 23

 DATA[0] = BYTE(Id);

 DATA[1] = HEX(04);

 DATA[2] = HEX(12);

 DATA[3] -> WORD(L1U := DATA * VScale;);

 DATA[5] -> WORD(L2U := DATA * VScale;);

 DATA[7] -> WORD(L3U := DATA * VScale;);

 DATA[9] -> WORD(L1I := DATA * AScale;);

 DATA[11] -> WORD(L2I := DATA * AScale;);

 DATA[13] -> WORD(L3I := DATA * AScale;);

 DATA[15] -> WORD(L1P := DATA * PScale;);

 DATA[17] -> WORD(L2P := DATA * PScale;);

 DATA[19] -> WORD(L3P := DATA * PScale;);

 TIMEOUT 1000

 END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 74

13.6.3. A general MODBUS DEVICETYPE definition

The definition below can be used to test a Modbus device. The device address and

register to be read are parameters. The register will be read using function code 4, and

stored in public variables both with native and reversed byte order. Normally Modbus

devices should use the reversed order.

DEVICETYPE ModbusRegister NAMED "MODBUS Reg" TYPEID 2000

IS

 PARAMETER

 Id :"Address";

 Register :"Register";

 PUBLIC

 Val :"Value";

 RVal :"RValue";

 PRIVATE

 VScale;

 AScale;

 PScale;

 BAUDRATE 9600;

 CHECKSUM MODBUS SWAPPED;

 TELEGRAM ReadRegister NAMED "R Register" IS

 QUESTION

 DATA[0] := BYTE(Id);

 DATA[1] := HEX(04);

 DATA[2] := RWORD(Register);

 DATA[4] := HEX(00);

 DATA[5] := HEX(01);

 ANSWER SIZE 7

 DATA[0] = BYTE(Id);

 DATA[1] = HEX(04);

 DATA[2] = HEX(02);

 DATA[3] -> WORD(Val := DATA;);

 DATA[3] -> RWORD(RVal := DATA;);

 TIMEOUT 1000

 END;

END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 75

13.7. Generic CRC

This chapter explains the CRC8 and CRC16 syntax subtrees in the syntax graph of a

GFBI type definition in section 12.2.2

13.7.1. Explanation

CRC is an acronym for Cyclic redundant check, and is basically a more advanced and

better way to detect errors than a simple checksum. Many protocols use CRC.

All CRC calculations used are based on the same algorithm. The main difference

between them is the so called polynomial, or poly, they use. Disregarding the theory

behind it, the poly is just a number that goes into the algorithm. Some numbers are

better than others, and they are standardized. Several numbers are in use, partly because

there is a difference in what they are good at. Some works better for long messages,

some for short and there is differences in the type of errors and the type of data they are

good at. The basic thing is that the POLY must be known.

The next thing that one must know is the start value, the INIT of the CRC. One can

start with zero, or all ones, or sometimes some other number.

In communication devices CRC calculations are done very often. It is therefore

sometimes very important to optimize. Because of that some implementations of CRC

uses reflections of data. Use the keyword REFIN if the input bytes are reflected, or

REFOUT if the output bytes are reflected.

Some implementations XOR the output value with another value before it is presented.

Such a value can be defined with XOR.

As with the other checksums the sum can be swapped and contain a skip section. This

has nothing to do with the CRC-algorithm, but rather with the protocol itself.

13.7.2. Examples

Here are some, unverified, settings for a few named CRC algorithms.

13.7.3. CRC16 / CITT

CHECKSUM CRC16

 POLY 1021 INIT FFFF;

13.7.4. CRC16 / ARC

CHECKSUM CRC16

 POLY 8005 INIT 0000;

 REFIN;

 REFOUT;

13.7.5. XMODEM / Kermit

CHECKSUM CRC16

 POLY 8408 INIT 0000;

 REFIN;

 REFOUT;

13.7.6. ZMODEM

CHECKSUM CRC16

 POLY 1021 INIT 0000;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 76

14. Group scripts

14.1. Introduction

Group scripts are a way of dealing with an unknown number of external devices of a

specified type. From the group it is possible to get information about how many

members it has, and to get statistical values for variables of it members. No explicit

code is needed to calculate such as means or medians.

The ITERATOR is a special kind of routine that is executed on all devices in a group,

with its variables and parameters in scope, as well as any aliased channels or other

functionalities. Where other languages uses for loops, goliath platform script uses

iterators. The iterator is also the only way to access parameter values for individual

devices form the script language.

14.2. Syntax

Below is the syntax graph for groups. Groups can be defined both in user scripts and

application scripts.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 77

14.3. Example

GROUP Lgh OF MAX 10 DEVICE TYPEID 1003 SELECT ALL

 SORT BY Id

 ITERATOR TempUpdate

 ALIAS

 Temp = CHANNEL[1]; %Outdoor temperature

 SensAlarm = TempSensor; %Channel for alarm out

 BEGIN

 Outdoor := Temp;

 IF SensAlarm THEN

 Outdoor := -40;

 ENDIF;

 IF sbTemp > 3 THEN

 Boiler := 0;

 ELSE

 Boiler := 1;

 ENDIF;

 END;

END;

This example is based on the device type used as example of DEVICETYPE in section

13.3. The device is a control central for apartment heating (with electrical radiators).

One channel and one alarm is aliased. The channel measures the outdoor temperature.

The alarm is an alarm monitoring the outdoor temperature sensor. All parameter, public

and private variables in the device definition are also in scope.

The first row after begin assigns the outdoor temperature to a device variable. This

variable is used in a telegram question compiler (not part of the example). This mean

that the outdoor temperature will be sent to all connected heating centrals.

If the alarm says the sensor is broken, the devices will be told it is –40 degrees outside,

as this is better than any faulty reading (like +150).

The second if statements turns on and of a tap water boiler depending on the setback

temperature. sbTemp is a device parameter, and represents how much the room

temperature in the apartment should be lowered from the normal temperature. The

temperature is lowered when the apartment in uninhabited, and thus it is reasonable

(and desirable) to also turn of the hot water to save energy.

14.4. Selection explanation

A group is defined with an identifier, Lgh in the example. It is also necessary to define

the maximum expected number of members, in order to allocate the right amount of

memory.

The TYPEID number defines what type of units can be members, and which device

variables are accessible.

After the TYPEID number there is a select condition. ALL means all devices of the

right type will be members, as long as their number does not exceed the group

maximum number.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 78

Using the ONLINE keyword requires the devices to have status OK to be allowed

membership. For groups where sensors are read this is recommended, as devices that

are not OK will not have fresh and valid information. For groups used for output, as in

the example, it can be better not to have the ONLINE requirement. Otherwise invalid

data may be sent to the devise in the first telegram before the unit is OK. All units are

reported as Trying (= 2) directly after power up. A Trying device is not online.

The ALL keyword can be replaced with an expression using the device variables and

parameters. We could change the example to make the group contain only devices with

sbTemp = 0.

Looking in the syntax graph we also see a possible a third condition, the PREFIX

condition. This is a name based condition, requiring the name of the device to start

exactly as the supplied string.

GROUP Lgh OF MAX 10 DEVICE TYPEID 1003

 SELECT spTemp = 0

 PREFIX ”Lgh”

...

14.5. Iterator explanation

In the example, and syntax graph, we can se a SORT BY statement. This statement is

followed by an expression. This statement is optional, but when it is present the group

member list will be sorted in ascending order based on the evaluated value from this

expression. Iterators will be applied to devices in this order. Do not use the SORT BY

statement if the order is not important, as evaluating the expression and sorting the list

takes extra computer power.

A group can have many iterators, or none, defined. They are pretty much like routines,

but with a few differences. An ALIAS section is allowed, but there can be no VAR

section. All variables are defined in the DEVICETYPE definition. Parameters, public

and private variables are all regarded as variables in the iterator. This means that it is

possible to assign values to device parameters, but this is not normally recommended.

The new value will not be displayed to the user, and will be overwritten if the user

changes any device setting, not only the specific parameter.

There are also a few automatic variables that can be used in expressions in an iterator.

These are

Name Value

Index Index in the group members list. Starts at one and ends at

Count.

Count The number of members in the group.

Status Device status: 0 = OK, 1 = FAILED, 2 = TRYING

First One during the first execution of an iterator, when Index is

one. Else zero.

Last One during the last execution of an iterator, when Index =

Count. Else zero.

DevIndex The index in the external devices list for the device the

iterator is currently operating on.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 79

The iterators are not automatically executed, as routines are in user scripts. They must

be called from a routine.

ROUTINE Application BEGIN

 CALL Lgh.TempUpdate;

END;

If the group has no members, the iterator will not be executed at all.

In release 2.1 two special statements, unique to iterators, were introduced:

These allow the script to exercise a more direct control over when telegrams are sent.

Normally each telegram is sent regularly, according to the telegram setting. The SEND

and SILENCE keyword can override the telegram setting. SEND marks the telegram as

ready to send. This causes the telegram to be compiled and then sent, with a delay of a

few seconds. SILENCE sets the telegram timer to infinity, so that it will never

automatically become ready to send.

In order for these statements to work the telegram setting may not be set to inactive or

one second. When a telegram sent using a SEND command gets a good reply, the

telegram timer is reloaded with the telegram setting. It will thus be automatically

repeated if not SILENCE or SEND is called before the timer runs out.

Normally when a telegram fails, i.e. did not get a good reply, it is marked for

immediate retransmission. Using SEND and SILENCE statements this can be

prevented. The iterator in the example below calls either SEND or SILENCE every

second. The SILENCE statement stops any retransmissions. This can be used to avoid

unwanted communication attempts with devices that may or may not be connected. The

example calls SEND only once every minute (the first second every minute), causing

the Read telegram to be sent once every minute. The preparation delay and possibly

message queuing, if more devices or telegrams are active, makes the exact timing for

when the telegram is actually sent unknown.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 80

GROUP Example OF MAX 1 DEVICE TYPEID 11043

 SELECT ALL

 ITERATOR Update

 ALIAS

 BEGIN

 IF TIME_SEC = 0 THEN

 SEND Read;

 ELSE

 SILENCE Read;

 ENDIF;

 END;

END;

Another use of the SEND / SILENCE statements is to control the sequence in which a

number of telegrams are sent, or to send special telegrams when special events occur.

The Status variable can be used to determine if a transmission was successful or not.

Variables set when decoding an answer can also be used to signal a successful

transmission, or to change an internal state.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 81

14.6. Group statistics

The syntax graph for obtaining statistical values of device variables from a group is

shown below.

And here an example.

ROUTINE TestGStat

ALIAS

 ChCount = CHANNEL[50];

 MaxTemp = CHANNEL[51];

 MinTemp = CHANNEL[52];

 MeanTemp = CHANNEL[53];

 DiffTemp = CHANNEL[54];

 StdTemp = CHANNEL[55];

 MedianTemp = CHANNEL[56];

 Kv1Temp = CHANNEL[57];

 Kv3Temp = CHANNEL[58];

 InterKvartil = CHANNEL[59];

BEGIN

 ChCount <- Test.COUNT;

 MaxTemp <- Test.inTemp.MAX;

 MinTemp <- Test.inTemp.MIN;

 MeanTemp <- Test.inTemp.MEAN;

 DiffTemp <- Test.inTemp.MAX - Test.inTemp.MIN;

 StdTemp <- Test.inTemp.STD;

 MedianTemp <- Test.inTemp.MEDIAN;

 Kv1Temp <- Test.inTemp.Q1;

 Kv3Temp <- Test.inTemp.Q3;

 InterKvartil <- Test.inTemp.Q3 - Test.inTemp.Q1;

END;

The syntax is quite straightforward. COUNT is a little bit special as it operates directly

on the group, and returns the number of members in the group. All other keywords

require that a device variable or parameter is identified.

Note that there is no alias for the group named Test. A group is accessible and in scope

for all routines after the group definition in the same script.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 82

Keyword Description

MAX Returns the highest value in the group

MIN Returns the lowest value in the group.

MEAN Returns the mean of all values in the group.

STD Returns the standard deviation for all values in the group.

MEDIAN Return the median value of the group. If COUNT is odd this is

the middle value, if it is even it is the mean of the two middle

values.

Q1 Returns the first quartile of the values in the group. If COUNT

is even this is the median of the lowest COUNT / 2 values. If

COUNT is odd it is the mean of the lowest COUNT/ 2 + 1

values.

Q3 Returns the third quartile of the values in the group. If COUNT

is even this is the median of the highest COUNT / 2 values. If

COUNT is odd it is the mean of the highest COUNT/ 2 + 1

values.

Every time this kind of expression is invoked the value must be evaluated for all

devices in the group, and then the statistical value evaluated. For MEDIAN, Q1 and Q2

this involves sorting. For large groups this may be time consuming. If a value is needed

in several places in the script it is thus better to calculate once and store in a variable,

than like in the example invoke it directly several times.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 83

15. AeACom Scripts

15.1. Introduction

AeACom is a protocol used on the expansion port RS485 line. The main feature of

AeACom is that it can be management free. AeACom devices has, much like Ethernet

devices, a factory set unique address. Therefore it is not necessary to set and manage

addresses manually. It is also possible to build systems with AeACom that works

instantly when devices are plugged in on the bus. The third benefit of AeACom is that

it can guarantee communication time intervals for individual devices.

On an AeACom bus the WMPro is master. At regular intervals it sends out a

synchronisation frame containing information about the number and size of time

segments used in a bus cycle. The sync frame also contains information about free time

segments. Newly connected devices randomly select one of the free time segments, and

use it to report to the master that it exists, and what kind of device it is. If the master

acknowledges the device it will continue to use that time segment throughout the

session.

When a new session starts with many devices connected, there will be an arbitration

period where all devices seek to find their own time segment. This may take a few bus

cycles, depending on the number of devices and the number of time segments.

15.2. AeACom Configuration

The AeACom master in the WMPro must be configured, so that it knows what to send

in the sync frame. Below is an example of such a configuration.

AEACOM2 CONFIGURATION

 BAUDRATE 19200;

 SEGMENT LENGTH 200;

 SEGMENTS 64;

 CYCLE TIME 15;

 RESERVED SEGMENTS 0000 0000 0000 0000 0000 0000 0000 0000;

 TRANSMIT SEGMENTS 0000 0000 0000 0000 0000 0000 0000 0000;

 ACCEPT UNKNOWNS;

END;

Segment length is in ms, but cycle time is in seconds. The number of segments,

segment time and cycle time must be carefully selected to work. The length of a

segment must be enough to fit both the telegram from the device and the answer from

the master, with enough margins for answer calculations and synchronisation

mismatch. The segments themselves must fit in the bus cycle. The maximum number of

segments is 128.

Reserved and transmit segments are segments that never will be reported as free. They

are marked out by a hex number bitmask. In Release 2.0 the master has no use for

reserved segments, but use will be implemented in the future. The transmit segments

are reserved for command transmits from the master.

The syntax graph for a AeACom configuration is shown below.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 84

Unknowns are devices of a type the master has no information about. These can either

be accepted and assigned a time segment, or rejected and told to shut up.

15.3. AeACom Type Definitions

Type definitions for AeACom is similar to those for GFBI. For AeACom there are no

telegrams in the GFBI sense. Instead the device will send a message frame. The length

of this frame is not required to be constant, but the maximal length must be stated. A

frame interpreter with the same syntax as for GFBI is used to verify and extract

information from it.

In reply to the message from the device the master sends an acknowledge message.

This is compiled by a frame compiler with the same syntax as for GFBI questions.

Below is the syntax graph for a AeACom type definition. The command part of the

syntax graph is not fully implemented in release 2.0.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 85

15.4. AeACom Groups

Groups works for AeACom devices exactly as they do for GFBI devices, except that

the DEVICE keyword in the declaration is replaced with AEACOM, like in the

example below.

GROUP RAGGroup0 OF MAX 60 AEACOM TYPEID 4658

 SELECT ONLINE RAGGroup = 0

END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 86

16. WMShare Scripts

16.1. Introduction

WMShare lets a WMPro import values from another WMPro as an external device.

The information is transferred using http.

As for the other types of external devices also WMShare requires type definitions.

Unlike the other types though, WMShare types are normally defined by the user in web

pages. It is however also possible to define WMShare types in the script language.

16.2. WMShare type definitions

As WMShare devices can only retrieve information, and never send data, the type

definition is quite different from GFBI and AeACom device definitions. There are no

frame interpreters or frame compilers. The type definition is simply another way to fill

in the web page form of a definition.

The TYPEID number must be between 1 and 5. The number of keys is limited to 20.

If there is a WMShare type definition present in the script it will overwrite any previous

settings at start-up. A script defined WMShare type definition will be marked with blue

background in the web page. The user can still modify it, but the modifications will be

nullified on reboot.

WMSHAREDEVICE WMSTest NAMED "WMSTest" TYPEID 1 IS

 KEY Outdoor = "OUTDOOR";

END;

In Release 2.0 there is no support for group scripts for WMShare devices.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 87

17. Device Initialisation

17.1. Syntax

A device initialisation initialises external devices. This can be done in any script, but

only for type definitions already defined.

For GFBI devices ACTION defines telegram settings. They can also have an INIT

section where parameter values are set. GFBI device initialisations will overwrite

existing settings and nullify user changes on boot.

For AeACom devices a range of number can be set to AeACom automatic, i.e.

reserving them for automatic assignment. AeACom Automatic initialisations will not

overwrite existing devices. An automatic device can be made permanent, and it will

then not be reset to automatic by the script.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 88

17.2. Telegram update interval codes

The number stated after a telegram identifier is a code for the update time of that

telegram. What the codes mean is listed in the table below.

Code conversion to seconds Update times

1…9 = Code 1,2,3 … 9 s

10…19 = (Code -9) * 10 10, 20, 30 … 100 s

20…28 = (Code -18) * 60 2, 3, 4 … 10 min

29…122 = (Code -26) * 300 15, 20 , 25 … 480 min

17.3. Examples

DEVICE

 DEV[2] = "Brunata Central" TYPEID 22100

 ACTIONS

 WhoRU(15),

 CountData(15),

 ReadBlock(12),

 SetTime(23)

 INIT

 Dummy = 0;

END;

The example above initialises a single device. Telegram update code 15 means one

minute update intervals. 12 mean 30 seconds and 23 for the SetTime telegram means

five minutes.

The example below initialises a range of devices as AeACom automatic.

DEVICE

 DEV[1] TO DEV[60] AEACOM 4658 AUTOMATIC;

END;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 89

18. Application scripts

18.1. Introduction

Application scripts are stored in the file appscript.gps. The application script can do

everything that the user scripts can do, and a little bit more. Most importantly the

application script can do initialisations on a large number of settings, including for

example channel and parameter settings.

The application script can also run special script code at start-up. This code is allowed

to run procedures. Procedures are routines that are allowed to do more things. Things

that are dangerous to allow in routines as they causes writes to the parameter bank. The

memory where the parameter bank is stored has a limited write erase cycle life time,

and writing every second would soon destroy the memory.

The application script is an important part of WMPro, and is part of updates and

releases just as the firmware and webpage’s are. The application script can be

customized for special applications, but it will then no longer be a true WMPro. It will

be a new application built on the Goliath platform.

18.2. Application script structure

Below is the main syntax for application scripts.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 90

The first part of an application script is informative. A name and an information string

are defined, and can be presented on web pages to the user. The version number is also

just for information. SWREQ is information about which firmware revision is required

in order for the script to work.

The hardware mode selection defines what hardware is expected and which measure

routine to be used. GOLIATH is the standard hardware mode, and currently the only

mode supported.

In the definitions section routines and procedures are declared, and channels,

parameters and other system elements defined and initialised.

Routines and procedures can be defined here too. They will not be automatically

executed as they are in user scripts. Another difference from user scripts is that all

defined object names, like for initialised channels, are in scope in the routines and

procedures. This reduces the need for alias sections.

What routines and procedures are to be executed is defined in the system section. The

BOOT procedure will be executed once on system start-up. APPLICATION is a routine

that is executed every second. Shutdown and event are for future expansion. These

sections can contain any statements, but for good readability it is recommended that

they mainly use CALL to routines or procedures in the DEFINITIONS section.

SCRIPT

 NAME "Example";

 VERSION 0.1;

 INFO "Example that does nothing.";

 SWREQ 1.0;

 HARDWARE MODE GOLIATH;

DEFINITIONS

SYSTEM

 BOOT

 PROCEDURE Boot BEGIN

 PRINT("GOOD MORNING! ", TIME);

 END;

 SHUTDOWN

 PROCEDURE Shutdown BEGIN

 END;

 EVENT

 PROCEDURE Event BEGIN

 END;

 APPLICATION

 ROUTINE Application BEGIN

 END;

END.

18.3. Definitions

This section deals with DEFINE statements in the definitions section. There may also

be routines and procedures defined in this section. The routines have been explained

earlier, and the differences between routines and procedures will be explained later.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 91

The first part of a definition is always the same, and follows the syntax:

The things that might follow will be explained in later sections. The identifier name

will be in scope in routines and procedure defined later, and can be used in expressions.

Most define statements can include flag initialisation, but these have been left out, or

only hinted, for simplicity in the syntax graph. Flags will be explained in a separate

section.

18.3.1. Initiators

Most define statements will be able to initialise system parts, such as channels and

parameters. This initialisation can be conditional. There are three initiator operators:

The := initiator stands for hard, unconditional, initiation. At every start-up the left side

entity will be assigned the right side value. A user can change the settings, but they will

be overwritten at the next boot sequence.

If you wish to let the user change things, use the = initiator instead. The assignment

will take place only if the user has not changed some part of the entity. When a user

changes a setting from the web page an edited flag will be set. This flag is common for

all individual settings of a single channel, parameter and alike. These flags can be reset,

system wide, from the web pages.

The – initiator is the weakest one. Assignment will only take place if the entity has not

been used before. Just as there is an edited flag there is also a used flag. This flag is set

as soon as a script defines it, or a user activates it.

18.3.2. Parameter definitions

A parameter is defined and initialised using the following syntax. The tree is a

continuation of the syntax tree started in the beginning of the chapter.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 92

The things you can initialise are the same things that can be set from the web pages. All

of these things are optional. Flags is common to many entities and will be explained

separately.

 DEFINE RefVal AS PARAMETER 1

 NAME := "Setpoint";

 UNIT := "cm";

 DECIMALS = 2;

 VALUE = 42;

 END;

 DEFINE X AS PARAMETER 2 END;

The names, RefVal and X in the example above, are identifiers that can be used in

expressions later in the script.

18.3.3. Constant definitions

The constant definition is the most simple one. It is just an alias for a number.

 DEFINE TheAnswer AS CONSTANT 42;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 93

18.3.4. Channel definitions

Whereas a constant was simple, channels are a little bit more complicated. The name,

unit, scale, offset and decimals part is not complicated. The source statement is also not

different from the web pages. The only things that will require extra explanation are the

math functions with arguments.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 94

The semantics MATH function initialisation will be explain here. The math functions

themselves are explained in the chapter about channels.

MATH := VARIANS;

MATH := STD;

These two statistical functions need no arguments. If they are included in a database,

the database will reset them on each update. Otherwise resets have to be done with the

RESET statement.

MATH := COUNTOVER(limit);

MATH := COUNTUNDER(limit);

MATH := COUNTPULSE(limit);

MATH := COUNTOVERDB(limit);

MATH := COUNTUNDERDB(limit);

MATH := COUNTPULSEDB(limit);

The argument of all count functions is the limit value. The count functions come in two

flavours. Those who end with DB will be reset by a database update, the others will

not.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 95

MATH := ARFILT(factor);

The argument of ARFILT is the filter factor. This should be a number between 0 and 1,

in order for the filter to be stable. 0 means no filtering, 1 means that the value will

never change.

MATH := MEAN(interval);

MATH := MIN(interval);

MATH := MAX(interval);

The argument for MEAN, MIN and MAX is an interval. If this number is bigger than 0

they will automatically reset after interval seconds. With 0 as argument they will not

reset automatically, but by database updates and the RESET statement. A reset will set

the value to the most resent measured value.

MATH := DIFF(scale);

The argument for the DIFF math function is a scale factor.

MATH := SUM(scale, limit);

MATH := SUMDB(scale, limit);

The two summing functions have two arguments. The first is a scale factor, the second

is a sum value limit. When the absolute value of the sum has reached the limit, it is not

allowed to grow more. SUM will not be reset by a database update, but SUMDB will.

MATH := RTD(R0, Alpha, T0);

MATH := THERMISTOR(R0, T0, Beta);

MARTH := POLY(a, b, c);

How these functions work is explained in the chapter about channels. The order of the

arguments is shown above. As these are conversion functions there is no meaning

resetting them.

MATH := HOURMETER(limit, unused, conter_value);

MATH := DBDIFF(last_ch_value, last_change,

hold_last_change);

The hourmeter is not meant to be reset, and the dbdiff function is reset by a database.

 DEFINE T1 AS CHANNEL 1

 NAME - "Temp 1";

 UNIT - "°C";

 DECIMALS - 1;

 SCALE - 1;

 OFFSET - 0;

 SOURCE - AIN_R(1);

 MATH - POLY(-246.009,0.2361,0.00000991);

 FLAGS - SHOW1, SHOW2;

 END;

Above: a channel definition example for a Pt1000 sensor on T1. This definition uses a

polynomial to do the translation from ohm to degrees. The RTD specialized for this

task could have been used as:

 MATH = RTD(1000,0.00385,0);

but this formula will not give as accurate results at high temperatures.

New to the 3.0 release is the mathematical function manual override.

MATH := MANUALOVERRIDE(manual_value, time_limit);

WebMaster Pro WMPro Reference Manual

Abelko Innovation 96

18.3.5. Curve definitions

Curves can be defined and initialised in the define section.

DEFINE CurveReg1 AS CURVE 1

 NAME = "Curve ctrl 1";

 XLABEL = "Outdor temp [°C]";

 YLABEL = "Setvalue temp [°C]";

 VALUEPAIRS := (-30,55)(-15,47)(-5,40)

 (0,40)(5,33)(15,17);

END;

DEFINE CurveReg2 AS CURVE 2

 NAME = "Curve ctrl 2";

END;

The valuepairs are pairs of x and y values that defines the curve. There is a limit of

maximum ten valuepairs.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 97

18.3.6. Alarm definitions

The syntax of an alarm definition holds few surprises and corresponds well to the web

page interface. CONDITION defines the channel to be monitored, the condition type

and the limits.

 DEFINE AlarmHighTemp AS ALARM 1

 NAME = "High temp";

 MESSAGE = "The indoor temperature is high.";

 CONDITION = AirTemp > 30;

 FILTER = ON 60 OFF 120;

 ACTION = EMAIL;

 ACTIONCHANNEL = DUT1;

 RESETFUNCTION = AUTOMATIC;

 END;

AirTemp and DUT1 in the example must be already defined channels.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 98

18.3.7. Database defines

Databases are defined with a syntax according to the graph below.

There can be up to 6 databases, numbered from 1 to 6. The start and end sectors refers

to flash memory sectors, numbered from 0 to 15. The end sector must be at least one

higher than the start sector. Ensure that databases do not overlap.

The update method SCRIPTED means that database updates will be controlled by

script, not by time. This feature is not yet implemented. INTERVALL means it will be

updated with the stated interval. The update will be performed when the system clock,

which counts seconds since 1/1 2000, is a multiple of the interval. This means that with

a one hour update interval the database will update every full hour.

The TIME update method provides a way to shift the update time.

 UPDATE := TIME 1 HOUR + 5 MINUTES;

This example will make the database update five minutes past every full hour.

Decimal numbers are allowed in the update initiation.

With CHANNELS it is possible to define which channels to store in the database.

Remember that changing a database CHANNELS definition will make the already

stored data faulty.

Below are the database definitions for WMPro. They contain no definition of the

content of the databases.

 DEFINE DB1 AS DATABASE 1

 NAME = "DB Short Time";

 TIMESTAMPS := POSTPERIODAL;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 99

 STARTSECTOR = 0;

 ENDSECTOR = 7;

 UPDATE = INTERVALL 1 SECONDS;

 END;

 DEFINE DB2 AS DATABASE 2

 NAME = "DB Hour";

 TIMESTAMPS := POSTPERIODAL;

 STARTSECTOR = 8;

 ENDSECTOR = 11;

 UPDATE := TIME 1 HOURS + 3599 SECONDS;

 END;

 DEFINE DB3 AS DATABASE 3

 NAME = "DB Day";

 TIMESTAMPS := POSTPERIODAL;

 STARTSECTOR = 12;

 ENDSECTOR = 15;

 UPDATE := TIME 1 DAYS + 86399 SECONDS;

 END;

18.3.8. Log entry definitions

A logentry is a message that can be enterer to the alarm / event log by a script. The

message to be entered must be defined by a logentry definition.

 DEFINE LigthOnMsg AS LOGENTRY 1

 NAME := "Ligth On";

 MESSAGE := "The ligth in the building was turned on.";

 END;

 DEFINE LigthOffMsg AS LOGENTRY 2

 NAME := "Ligth OFF";

 MESSAGE := "The ligth was turned off.";

 END;

 DEFINE LightInDiff AS CHANNEL 55

 NAME := "LigthIn";

 SCALE := 1;

 OFFSET := 0;

 SOURCE := DIN(2);

 MATH := DIFF(1);

 END;

 ROUTINE CheckLigth

 BEGIN

 IF LightInDiff > 0 THEN

 LOGENTRY(LigthOnMsg);

 ENDIF;

WebMaster Pro WMPro Reference Manual

Abelko Innovation 100

 IF LightInDiff < 0 THEN

 LOGENTRY(LigthOffMsg);

 ENDIF;

 END;

The example above uses DIFF on a digital input to detect status changes and add

messages when something happens.

NOTE: LOGENTRY will not work in release 2.0.

18.3.9. Flags

For many of the functionalities that can be defined / initialised, there are also flags that

can be initialised. This has been left out to save space, and as it works in the same way

for all functionalities.

This graph is a part of a bigger graph. That is why there is no endpoint. The bigger

graph provides a loop back from the right side to the left side.

The FLAGS keyword can be followed by one or many of the keywords SHOW1 to

SHOW3. The listed keywords represents flags that will be set, those not listed will be

cleared. The show flags can be used by web pages to categorize channels and other

items.

Write and read access can also be defined in the flags section. The last keyword defines

the login level required for access.

 DEFINE T1 AS CHANNEL 1

 NAME - "Temp 1";

 UNIT - "°C";

 DECIMALS - 1;

 SCALE - 1;

 OFFSET - 0;

 SOURCE - AIN_R(1);

 MATH - RTD(1000,0.00385,0);

 FLAGS = SHOW1;

 READ = GUEST;

 WRITE := CONFIG;

 END;

In Release 2.0 flag initialisation is only implemented for CHANNEL and

PARAMETER.

In WMPro for channels the show 1 flag is used to indicate that the channel is connected

to a sensor. Show two is used to indicate that the channel is not digital assignable.

These flags are used by some web pages and applets to filter out channels for drop

down lists.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 101

18.4. Procedures and Statements

18.4.1. Procedures

Procedures are just like routines, except that there is no restriction on which statements

that can be used. These non-light statements will be presented in the following sections.

18.4.2. Assignments

Procedures have more assignment possibilities than routines.

It is possible to assign values to scale and offset, and to math function parameters.

18.4.3. The PUTPAR statement

WebMaster Pro WMPro Reference Manual

Abelko Innovation 102

PUTPAR makes it possible to assign values to any assignable parameter in the

parameter bank. Read the chapters about the parameter bank to understand how to use

PutPar.

The first argument to PUTPAR is the parameter number. The second, third and fourth

arguments are the x, y and z numbers. The final argument, that can be either numeric or

a string, is the value to be put to the parameter. There is no guarantee that the parameter

bank will accept the call. Both parameter numbers and the value may cause the

parameter bank to object.

Example:

 PUTPAR(1507,1,0,7,0);

Putting this row in the boot section of an application script will disable the operator

panel.

18.4.4. Call statements

In procedures, calls can be made to other procedures, as well as to routines.

18.4.5. Update

The update statement is currently only experimental. Use is discouraged and future

support is not guaranteed.

The boot procedure is executed once, before any routines of the application section or

user script routines are executed. A call to UPDATE halts the script execution until the

inputs and outputs and channels have been updated. The DI and DO leds are not

updated by calls to UPDATE.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 103

19. The Parameter Bank

19.1. Introduction

The parameter bank is a central part of

WMPro (and the Goliath platform). The

parameter manages all values that can be

stored in non-volatile memory, and all

information that can be viewed on web

pages. A parameter in this context is

virtually any piece of information, not to be

confused with application parameters in the

web interface and script language.

What we will focus on in this chapter is the http based API used to access values in the

parameter bank from web pages, applets, OPC servers, and other application programs.

Every parameter has a parameter number. Usually though parameters are

multidimensional, and contain many values of the same sort. Parameter 501 for

example contains all 200 parameter names. Up to tree dimensions can be used to

specify a single value of a parameter. How they are used varies between parameters.

For parameter 501 the x dimension corresponds to channel numbers. Thus p501x1y0z0

refers to the name of channel 1.

For http access ssi and cgi functions are used. The getpar.ssi, getpart.ssi and getparx.ssi

are used to retreive values, and putpar.cgi is used to set values.

The file backup.par is a text file the parameter bank generates with all information from

the parameter bank. It can be written back to the virtual file putpar.par to set values in

the parameter bank. This is used for system backup, but by editing the file sent to

putpar.par it can be used for other purposes too.

19.2. Parameter numbers

Parameter numbers for many of the fundamental functionalities have been defined in

the first section of the reference manual. For all these the x dimension is used to specify

the number of a channel, parameter, etc. Setting the x parameter to 0 refers to all. For

parameters where the type is declared to be an array the z dimension is used to identify

elements in the array. For example p514x1y0z7 refers to the seventh flag (the USED

flag) of channel one. Setting z to 0 refers to the whole array. You can normally not set

x to zero and use specific values for y and z.

Changing the /goliath.htm ending of the address field when surfing in a goliath to

/t_frame.htm will bring up a test page. This can be used to experiment with parameter

bank numbers.

Fill in a parameter number in the Parameters field, like p514x1y0z0, and then press

Get. The page will then use getpar.ssi to get the parameter from the parameter bank.

The result is shown in the window further down. Messages from the parameter bank are

shown at the bottom of the page.

The parameter we retrieved was all flags for channel one. As this consists of several

values they are separated with semi colons when they are presented.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 104

Trying to get p501x0y0z0, all channel names, will fail because this is too much data for

getpar.ssi. We will later show how this information can be received using the

getparx.ssi instead.

Parameters can also be written using the test page. Type a value in the value field and

then press Set. If successful the parameter bank should reply with PUTPAR: OK. Be

careful not to write in parameters unintentionally.

19.3. Getpar.ssi

Getpar.ssi can be used directly in the address field of a web browser. Type for example:

http://10.0.48.94/getpar.ssi?pararg=p501x1y0z0

The browser will believe it is opening a file named getpar.ssi, and the file will contain

the name of channel 1.

19.4. Putpar.cgi

Invoking putpar.cgi from the browser is done in a similar manner. The example

http://10.0.48.94/putpar.cgi?p501x1y0z0=Test

will set the name of channel 1 to “Test”. The WMPro will return a web page containing

a message from the parameter bank. If successful the message is

PUTPAR : OK

http://10.0.48.94/getpar.ssi?pararg=p501x1y0z0
http://10.0.48.94/putpar.cgi?p501x1y0z0=Test

WebMaster Pro WMPro Reference Manual

Abelko Innovation 105

Change the y value to one, which is illegal for parameter 501. The parameter bank will

return the error message:

PUTPAR(p501x1y1z0) : Invalid arguments or data!

19.5. Getpart.ssi

Getpart.ssi works exactly like getpar.ssi, but it appends an end of transmission

character (EOT = ascii code 4).

19.6. Getparx.ssi

The getparx ssi is an extended version of getpar. It can do everything getpar can and is

used in the same way. Getparx can handle much larger chuncks of data, and can return

parameter lists that are to big for getpar, like the list of all channel names.

Getparx also has some extended features that will be explained here.

19.6.1. Multiple parameter retrieval

GetParX allows you to specify several parameters in one request. The parameters are

separated by a semicolon. To retrieve all channel names, values and units in one

request an URL like this can be used:

http://10.0.48.94/

getparx.ssi?pararg=p501x0y0z0;p507x0y0z0;p502x0y0z0

The answer consists of values separated by comma signs, and “rows” separated by semi

colons. The result may look like the shortened example below:

Test,155.1,°C;Forward Temp,153.1,°C;Temp 3,153.8,°C;Temp

4,155.7,°C;Temp 5,152.7,°C;Temp 6,154.3,°C;Temp

7,155.5,°C;Temp 8,155.7,°C;Analog in 1 (U),0.1,V;

The maximum number of parameter arguments to getparx is 10.

19.6.2. Flag selection filter

So far we have seen the possibilities of retrieving one specific value or all values in a

parameter. With getparx there is also a possibility to get only values instances where

the corresponding flag parameter meets a specified condition. Flags will be explained

more thoroughly later. There is a flag set for all used instances of objects. This flag has

the bit mask value of 64. This example will get the names of all used channels:

http://10.0.48.94/getparx.ssi?pararg=p501x0y0z0b64,64

whilst

http://10.0.48.94/getparx.ssi?pararg=p501x0y0z0b64,0

will get all the unused.

The value after the b in the parameter specification is anded with the flag word that

belongs to the object the parameter refers to and the result is compared with the value

after the comma. If equal the value is included in the result.

When using this feature one problem may be that you do not know the indexes (x

value) of the values returned. For many functionalities there is therefore a XNR

parameter. For alarms this parameter has number 1118. The example below will return

index and name of all used alarms.

http://10.0.48.94/

getparx.ssi?pararg=p1118x0y0z0b64,64;p1100x0y0z0b64,64

WebMaster Pro WMPro Reference Manual

Abelko Innovation 106

The returned file could look like this:

1,Safety alarm;3,Pressure loss

Notice that the flag filter must be applied to all parameter arguments to get a sensible

result.

If we were to use both the x dimension to specify a specific object, and the flag filter

parameter the result is that all values with an x dimension equal to or higher than x

value fulfilling the filter condition is returned.

http://10.0.48.94/

getparx.ssi?pararg=p1118x2y0z0b64,64;p1100x2y0z0b64,64

returns

3,Pressure loss

Below is a list with X-number parameters and flag word parameters belonging to a

certain functionality and parameter range.

Functionality Parameter range Flag word X-number

Channel 5xx 513 515

Parameter 9xx 904 906

Alarm 11xx 1106 1108

Database 12xx 1209 1213

Curve 13xx 1307 1309

Summary page 16xx 1612 1614

Time control 17xx 1714 1716

Overview 18xx 1805 1807

Database email 19xx 1912 1914

External devices 2000-2029 2090 2092

Connections 21xx 2190 2192

Device email 22xx 2290 2292

WMShare typedef 23xx 2390 2392

19.7. Flags

Flags are special parameters collecting state information, read and write access levels

and other things in a flag word. Many of the flags are automatically managed by the

parameter bank. The flag word itself can be read, but not directly written to. To set a

flag the flags array parameter is used instead. This parameter allows access to

individual flags trough the z dimension.

The functionalities sections (chapter 2 to 9) presents the parameter number for the flag

array parameter in all the functionalities. The table of flag words in the chapter on

getparx refers to the flag word parameter. The flag word and the flag array are different

ways of presenting the same information. The flag array has always the parameter

number after the flag word.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 107

Some flags are common to all flags parameters, while other may have different

meaning for different functionalities.

19.7.1. z=7 The Used flag

The used flag is used to indicate that the object it refers to is used for something. For

some functionalities this flag is automatically managed and set as soon as there is a

write to any other parameter in the object. For other functionalities this flag is used to

manually activate the object.

The used flag is bit 6 in all flag parameters, which mean that it has z number 7 in the

flag array.

19.7.2. z=8 The Edited flag

The edited flag is used to indicate that the object has been edited by the user. It is

automatically set by the parameter bank when a parameter in the object is written to by

putpar.cgi.

The edited flag is bit 7 in all flag parameters, which mean that it has z number 8 in the

flag array.

19.7.3. z=16 The Script flag

The script flag is set for objects that are used by scripts. This flag is set or cleared on

every boot when the scripts are compiled.

The script flag is bit 15, and is referred to by z=16.

19.7.4. The Show flags

All flag parameters except the flag parameter for external devices has three free flags

called show1, show2 and show3. They are bit number 12, 13 and 14 and thus use z

number 13 to 15.

These flags have no preset function. They can be used to build customized filters for

web pages and applets. In WMPro these flags are used only for channels, where show1

has the meaning of sensor channel and show2 not digital assignable channel.

19.7.5. z=9 The Backup flag

Channel values are normally set to zero at start-up, in order to make the start up

sequence of a system predictable. If there is some reason to use a channel more like a

parameter this flag can be set. The channel value will then not be reset at start-up,

instead the stored value will be used.

The channel value is always saved when written to using putpar.cgi and when the

system is reset in a controlled way. If the channel is updated by a script the value is not

saved every time the script writes to it. It is saved only at controlled resets and at the

regular backup intervals, every hour shift.

Using this flag is not recommended unless there are compelling reasons.

19.7.6. The other flags

The rest of the flags in the flag parameters are for internal use in the parameter bank

only.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 108

19.8. Backup.par and putpar.par

As mentioned in the introduction backup.par is a generated file that contains a complete

image of the parameter bank. It is a readable text file that is generated when requested,

and that is why it takes some time to download it. Below is a small extract from a

backup par as example on what it can look like.

[RW-F]:p501x192y0z0=Channel 192

[RW-F]:p501x193y0z0=Channel 193

[RW-F]:p501x194y0z0=Channel 194

[RW-F]:p501x195y0z0=Channel 195

[RW-F]:p501x196y0z0=Channel 196

[RW-F]:p501x197y0z0=Channel 197

[RW-F]:p501x198y0z0=Channel 198

[RW-F]:p501x199y0z0=Channel 199

[RW-F]:p501x200y0z0=Status Led

[RWE-]:p502x1y0z0=°C

[RWE-]:p502x2y0z0=°C

[RWE-]:p502x3y0z0=°C

[RWE-]:p502x4y0z0=°C

[RWE-]:p502x5y0z0=°C

[RWE-]:p502x6y0z0=°C

[RWE-]:p502x7y0z0=°C

[RWE-]:p502x8y0z0=°C

[RWE-]:p502x9y0z0=V

[RWE-]:p502x10y0z0=V

This file can be uploaded to the file pupar.par. The file is then interpreted and the

parameter bank is set exactly as described in the file.

Editing this file makes it possible to copy selected settings from one WMPro to

another. By removing all lines for parameters with parameter numbers smaller than 500

you ensure that the network and other basic settings are not changed.

To copy something more specific keep only the specific parameter numbers you need

in the file. In the chapter on getparx there is a table where you for instance can read that

all parameters starting with 18xx regards overview pages. To copy only the settings for

the overview pages leave only these parameters in the file. If you wish to be even more

specific and only copy the settings for overview 1 select only rows with where the x

dimension is one. (Note that the actual image file is not stored in the parameter bank.)

19.8.1. The parameter bank edit interface

If it is only a few parameters that are to be copied there is a user interface accessible on

the system, file manager page.

Click on the word here under CONFIGURATION.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 109

What you get is a text window where you can paste and edit parameter lines. Press

update to transfer them to putpar.par

Putpar.par is a virtual file, and is it never stored in flash memory as scripts and user

files are, so there is no reboot when the file is uploaded. As the file is interpreted it can

take some time to upload a large file.

19.8.2. The Appinit.ini file

The appinit.ini file is also a file that like the backup.par stores an image of the

parameter bank. This file does not contain all information in the parameter bank. It just

contains a selection that represents the application part of the parameter settings, not

communication settings, passwords and settings like that.

The appinit.ini file is stored in flash. It works as a local backup copy.

Another difference from the backup.par file is that it uses a more compact format for

encoding the parameter information. This makes it less suitable for manual edit, even if

it is not impossible.

The file size of the Init.ini file is limited to 64 kbyte by the flash sector size. This

means that there is no guarantee that all information will have room in the file. This

depends on how much of the WMPro that is used. In normal cases everything will fit.

What will be stored in the appinit.ini file depends on what is already stored. If a file is

present the selection of parameters it represents is used as base when a new file is

generated. If the file is empty a default selection is used. Release 2.0 has extended the

default selection to include new features such as external units and connections. To be

sure these are included when generating an ini file in an upgraded WMPro erase the old

appinit.ini first. Remember this effect also when an ini file from an older WMPro is

used in a new one.

19.9. Naming restrictions

Since commas and semicolons are used by the parameter bank to separate values, these

are not allowed to be part of the value. As many values are included in web pages there

are more restrictions on which characters can be used in names and other strings

without causing trouble.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 110

Most web pages and applets where names can be set checks for these bad characters

and removes them before the string is sent to the parameter bank, or gives an error

message. When bypassing these safety functions and writing directly to the parameter

bank this has to be checked by the writer. Failing to do so may cause the parameter

bank to be corrupted, or web pages to stop working.

Below is a list of the bad characters that should not be used in strings stored in the

parameter bank.

Character ASCII-code

“ (double quote) 34

‘ (single quote) 39

+ (plus) 43

, (comma) 44

; (semi colon) 59

[(rigth square bracket) 91

\ (back slash) 92

] (left square bracket) 93

19.10. System parameters

The parameter numbers concerning the different functionalities are listed in the

corresponding functionality chapter. There are however more parameters of interest;

Parameters that deal with basic settings and system information. Such parameters are

presented in the table below.

Parameter bank name Number Description

PN_VERNR1 1 Version numbers

z = 1 Bootloader

z = 2 Firmware

z = 3 Web pages

z = 4 Application script

PN_COMMAND 5 Explained in separate chapter

PN_CURRENTACCESSNAME 9 The login name used

PN_COMPILETIME 10 Firmware compile time

PN_CLOCK 14 Current time

PN_TIMEZONE 16 Timezone adjustment in

minutes

PN_MODNAME 21 Module name

PN_MODTEXT 24 Module address

PN_ETHERNETMACADDRESS 200 MAC-address

PN_ETHERNETDHCPACTIVE 201 DHCP active for Ethernet

interface

WebMaster Pro WMPro Reference Manual

Abelko Innovation 111

PN_ETHERNETIPADDRESS 202 IP address for Ethernet

interface

PN_ETHERNETSUBNETMASK 203 IP subnet mask for Ethernet

interface

PN_ETHERNETGATEWAY 204 Gateway for Ethernet interface

PN_PPPDHCPACTIVE 205 DHCP active for PPP interface

PN_PPPIPADDRESS 206 IP address for PPP interface

PN_PPPSUBNETMASK 207 IP subnet mask for PPP

interface

PN_PPPGATEWAY 208 Gateway for PPP interface

PN_PPPMODEMINIT 209 Modem initialisation string

PN_PPPBAUDRATE 210 PPP baudrate

PN_PPPPHONENR 211 PPP phone number

PN_PPPTIMEOUT 212 PPP Timeout [seconds]

PN_PPPDCDTIMEOUT 213 PPP Timeout for DCD modem

signal [seconds]

PN_PPPREMOTEACCESSNAME 215 PPP Remote access name

PN_PPPREMOTEPASSWORD 216 PPP Remote password,

encrypted

PN_PPPMODE 217 PPP mode

PN_PPPCHAPPASSWORD 218 Chap password, encrypted

PN_DNSSERVER1 219 DNS server, first alternative

PN_DNSSERVER2 220 DNS server, second

alternative

PN_DNSSERVER3 221 DNS server, third alternative

PN_PROXYSERVER 222 Proxy server

PN_PROXYREMOTEACCESSNAME 223 Proxy remote access name

PN_PROXYREMOTEPASSWORD 224 Proxy remote password,

encrypted

PN_PROXYKEEPALIVEINTERVAL 225 Proxy keep alive interval

[seconds]

PN_PROXYONLINE 226 Proxy server is online (read

only)

PN_PORTALSERVER 228 Portal server

PN_PORTALID 229 Unit identification number for

portal (read only).

PN_PORTALUPDATEINTERVAL 230 Update interval for portal

[seconds]

PN_PORTALUPDATED 231 Portal updated (read only)

PN_SMTPSERVER 233 SMTP (Outgoing mail) server

WebMaster Pro WMPro Reference Manual

Abelko Innovation 112

PN_SMTPPORT 234 SMTP Port number

PN_SMTPRETURNADDRESS 235 Return address in mails

PN_SMTPRCPT 236

PN_SMTPCLIENT 259 SMTP client name

PN_SMTPMIMEACTIVE 260 Use MIME, default 1

PN_APPSCRIPTNAME 3000 Application script name

PN_APPSCRIPTINFO 3001 Application script info text

PN_APPSCRIPTVERNR 3002 Application script version

number

PN_APPSCRIPTSWREQVERNR Application script required

lowest firmware version

PN_USERFILENAME 3200 User script file names,

x=1 to 6

19.11. Command – parameter no 5

Among all the parameters in the parameter bank there is one that is a little bit more

special than the others. Parameter number five is a parameter that cannot be read and

does not store a value. This is a parameter you write commands to. Commands that the

WMPro will perform.

http://10.0.48.94/putpar.cgi?p5x0y0z0=RESET

The example above writes a reset command to the WMPro. The WMPro returns a web

page containing PUTPAR: OK as a receipt that the parameter write and command was

understood. Then it performs a controlled restart.

For some commands the z dimension is used to pass an argument for the command.

The table below lists possible commands and arguments.

Command string z Explanation and arguments

INIT Initialisation of the parameter bank with default values

001 Default init RAM param.

002 Default init EEPROM + FLASH param with protection

level < 1

003 Default init EEPROM + FLASH param with protection

level < 2

004 Default init all EEPROM + FLASH param

WARNING - Do not use this! It destroys calibration,

serial number and other vital information.

01# Same as 001 and 00#

1## Same as 0## and reset

WebMaster Pro WMPro Reference Manual

Abelko Innovation 113

APPINIT Command to create or use the appinit.ini file

001 Check

002 Execute

003 Update

004 Create

01# Verbose version of the commands

1## Same as 0## + reset

CLEARDBS Clears databases and event log

1 Clear database 1 (short time)

2 Clear database 2 (hour)

3 Clear database 3 (day)

4 Clear database 4 (unused)

5 Clear database 5 (unused)

6 Clear database 6 (unused)

7 Clear event log

0 Clear all databases, but not the event log

CLEARPRG Erases a selected file

1 Erase bootloader WARNING! This is a self destruct

command, NEVER do this. It cannot be undone.

2 Erase firmware. Do not do this!

3 Erase application web pages. Do not try this at home!

4 Erase application script appscript.gps.

5 Erase appinit.ini.

6 Erase uses web pages.

7 Erase user script userscript.gps

8 Erase user file 1.

9 Erase user file 2.

10 Erase user file 3.

11 Erase user file 4.

12 Erase user file 5.

13 Erase user file 6.

ACKEVENT:@@@ Acknowledge / reset event. @@@ is to be replaced by a three

letter signature written in the event log.

0## Reset event number ##

255 Reset all events and alarms

ACKALARM:@@@ 0## Acknowledge / reset Alarm ##. @@@ is to be replaced

by a three letter signature written in the event log.

WebMaster Pro WMPro Reference Manual

Abelko Innovation 114

RESET 0 Restarts the WMPro in a controlled manner.

BACKUP 0 Perform the parameter storage routine normally

executed every hours and before controlled restarts.

GPRS 0 Tries to measure signal strength on a GPRS modem.

Will return Invalid data error message if no modem is

present.

TEST_EMAIL 0 Sends a test alarm email.

